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Abstract

Consider a CIA agent who wants to authenticate herself
to a server, but does not want to reveal her CIA credentials
unless the server is a genuine CIA outlet. Consider also that
the CIA server does not want to reveal its CIA credentials
to anyone but CIA agents – not even to other CIA servers.
In this paper we first show how pairing-based cryptog-

raphy can be used to implement such secret handshakes.
We then propose a formal definition for secure secret hand-
shakes, and prove that our pairing-based schemes are se-
cure under the Bilinear Diffie-Hellman assumption. Our
protocols support role-based group membership authenti-
cation, traceability, indistinguishability to eavesdroppers,
unbounded collusion resistance, and forward repudiability.
Our secret-handshake scheme can be implemented as a

TLS cipher suite. We report on the performance of our pre-
liminary Java implementation.

1. Introduction

The folklore of exclusive societies or groups includes
the notion of a secret handshake whose purpose is to al-
low members of the group to identify each other. Secret
handshakes guarantee the following: 1) non-members can-
not recognize the handshake, and therefore are not able to
recognize group members; and 2) non-members can’t per-
form the handshake and therefore are unable to fool group
members into thinking they are also members.

In this paper, we propose a scheme that can be used by
members of a group to authenticate each other with the
same guarantees as a secret handshake. Moreover, group
members can play different roles within a group, and can

∗This work was done while visiting the Palo Alto Research Center.

authenticate themselves in these roles. For example, if the
group is a secret society with different membership levels
(novice, grand master, etc), then not only is group member-
ship authenticated, but the membership level (role) of the
other party is as well. Thus, if party A is a member of group
G1 and has the role rA, and B is a member of group G2 with
role rB, our scheme is such that, after a handshake between
A and B,

• Neither A nor B learns anything about the other party
if G1 does not equal G2;

• Both A and B learn their respective group memberships
only if G1 equals G2 (i.e., if they are, in fact, members
of the same group);

• A can choose to only authenticate to members with cer-
tain roles. For example, A can decide not to reveal
anything about itself unless B is a member of the same
group as A, and has role rB. The same is true for B.

• A third party observing the exchange between A and
B does not learn anything (including whether A and B
belong to the same group, the specific identities of the
groups, or the roles of either A or B).

Our scheme can also provide traceability (if an adversary
breaches the scheme by corrupting a true member, or a set
of members, then that member will be traceable), forward
repudiability (a successful handshake interaction between
two members U1 and U2 does not give either of them the
ability to prove the membership of the other to a third party),
and collusion resistance (the system remains secure even if
collections of users pool their secrets in an attempt to under-
mine the system). However, unlike a physical handshake,
our scheme is asymmetric, and fairness cannot be guaran-
teed.

Our scheme is a simple adaptation of the non-interactive
key agreement scheme of Sakai, Ohgishi and Kasahara [27],
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and its security rests on the hardness of the bilinear Diffie-
Hellman problem (see, for example, [6]). In addition to pre-
senting the scheme, we offer a formal notion of secure se-
cret handshakes, and prove that our construction satisfies
the formal definition of security. Both the definition of se-
cure secret handshakes and the analysis that our scheme sat-
isfies it are novel, and constitute the core of our contribu-
tions.

Secret handshakes can be used to securely discover ser-
vices that are restricted to authorized users. For example, if
an “air marshal service” is deployed at an airport, secret
handshakes can be used to ensure that only air marshals
can discover and use that service. Likewise, other service
providers (like weather forecasters or commercial service
providers) can be prevented from learning of the presence
of air marshals through the use of secret handshakes.

Secret handshakes can also be used for privacy-
preserving authentication. Unlike other solutions (e.g., [8]),
the use of secret handshakes does not require users to blind,
or withhold, part of their credentials in order to achieve pri-
vacy. Instead, users can present all their credentials, and
rest assured that the receiving party will not learn anything
about credentials that were issued by a different group.

The ability of our scheme to handle different roles
within a group has practical applications. For example,
while a pro-democracy movement may have a flat organi-
zation (every member is a peer), and members authenticate
each other simply as “member-of-the-movement”, in some
groups members play different roles. In a group that im-
plements the traffic-regulating arm of the government, two
roles are clearly needed: “traffic cop” and “vehicle opera-
tor”. A vehicle operator should be able to authenticate to a
legitimate traffic cop if and only if the operator is certified
to operate a vehicle. If, however, an impostor is posing as
a traffic cop then he will be unable to verify the driver’s li-
cense of the other party, (even if the impostor is a certified
vehicle operator).

This paper is organized as follows. We start off dis-
cussing, and contrasting secret handshakes with, related
work. We then run through an extensive example that ex-
plains how our scheme works. In Section 4 we give a more
detailed treatment of our scheme – we introduce the notion
of a secret handshake, explain what it means for a secret
handshake to be secure, and show that indeed our scheme
implements a secure secret handshake. Our implementation
experience is discussed in Section 6. We conclude with a
discussion of practical issues in Section 7.

2. Related Work

Secret handshakes require a mechanism for group-based
authentication. That is, users must only be able to authen-
ticate themselves as members of a group to other members

of the group. In addition, handshakes can be performed in
a privacy-preserving manner, meaning that as a result of
the handshake each user only learns that the other party
is a member of the group, not the party’s identity. The
group membership detection problem has been studied in
a variety of settings that overlap partially, but not com-
pletely, with ours. In the following we describe a number
of these works and explain why they don’t solve the secret-
handshake problem.

KEY AGREEMENT/EXCHANGE. We use the novel key
agreement protocol of Sakai, Ohgishi and Kasahara [27] to
build a new tool: the secret handshake. This key agree-
ment protocol is used in [24] to accomplish authenticated
identity-based encryption in a simpler setting than the one
we consider (i.e., there is no notion of roles or groups). In
our scheme, completing the secret handshake is essentially
equivalent to computing a key that is particular to the two
interacting group members. Hence, the secret handshake
changes according to the group members involved. This
gives us the opportunity to ensure collusion resistance: a
coalition of corrupted groups members should not be able
to perform the handshakes of group members outside the
coalition. Requiring collusion resistance means that some
care must be used if a key agreement protocol forms the
foundation of a handshaking scheme. For example, such
collusion resistance is not even an option with a shared
group key. Further, a scheme based on shared group keys
has the additional disadvantages of untraceable key leaks,
rekeying upon every member revocation and no role capa-
bility. The Two-party Diffie-Hellman [17] key agreement
scheme provides pair-specific handshakes but no collusion
resistance (for details on this point see Section 5.3). In fact,
the goals of key agreement protocols do not include group-
based authentication, so as a class such protocols don’t fit
our needs. We use the Sakai et al. scheme because it is se-
cure against colluding sets of users of unbounded size pro-
vided the discrete log problem is hard.

The standardized key exchange scheme IKE [20] in
its identity protection mode uses unauthenticated Diffie-
Hellman key agreements to hide the identities of the par-
ticipants from eavesdroppers. It does not, however, provide
identity protection from active attackers. Similarly, [1] pro-
vides protection against eavesdroppers but doesn’t preserve
the privacy of the communicating parties.

ANONYMOUS CREDENTIALS. When group membership
is proven via credentials obtained from a central authority,
anonymity can still be achieved. For example, if a restric-
tive blind signature issuing protocol [8] or self-blinding cer-
tificates [29] are used, the amount of identifying informa-
tion that is revealed can be limited by blinding parts of the
certificate. In addition, Chaum’s [13] pseudonym systems
(see also [25, 10]) allow users to prove membership via cer-
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tificates issued under unlinkable pseudonyms. In either of
these approaches there is an untraceable key that can be
used by anyone to verify membership. Although public ver-
ifiability is a useful attribute that’s quite difficult to achieve,
it is not appropriate for secret handshakes. Even though our
system makes use of pseudonyms, verification is only pos-
sible by group members because it relies on unique, secret
information (i.e., the secret handshake).

SIGNATURES. There are a variety of techniques that al-
low users to generate signatures with anonymity. For ex-
ample, signatures generated with a group signature scheme
[14, 11, 18, 9] only allow the verifier to determine the sig-
nature was generated by someone in the group. Identity
escrow schemes [23] are essentially equivalent. Ring signa-
tures [26] provide group signatures for ad hoc groups. Both
techniques are inappropriate for secret handshakes for the
same reason as anonymous credentials, namely, anyone can
verify the signatures. This is somewhat remedied by des-
ignated verifier signatures [22]. With a designated verifier
scheme the signer can generate signatures that are only ver-
ifiable by a set of users of the signer’s choosing. However,
when designating the set it is necessary to know the public
keys of the members of the set, hence such schemes aren’t
immediately applicable to the secret-handshake setting in
which users are relying on the handshakes themselves to
discover group members. Finally, although our handshake
schemes build on previous work in identity-based cryptog-
raphy, identity-based signatures (see, for example [28, 12])
aren’t appropriate here because they aren’t intended to re-
strict verification to group members.

MATCHMAKING. The setting of private matchmaking [30]
is similar to ours in that the goal is to allow members of the
same group to authenticate each other. However, it’s quite
possible that non-members will be able to identify mem-
bers. For example, in the schemes in [30] any user may
search for air marshals by generating the key corresponding
to the term “air marshals”.

ACCUMULATORS. A group of users who wish to recog-
nize each other without the use of membership lists or a
central authority may choose to form an object called an ac-
cumulator and witnesses for each user in the accumulator
[5, 2, 19, 10]. To authenticate each other, two users ex-
change witnesses and perform operations that result in the
original accumulator if indeed they are both members. Al-
though accumulators can be used to achieve anonymous au-
thentication they are ill-suited to the secret-handshake prob-
lem for the following reasons. First, the accumulator is
an untraceable object that can be used to verify (but not
prove) membership. We require that membership can only
be proven to other group members. Second, adjustments to
both the accumulator and the witnesses are necessary when
members leave the group. We present a scheme in which

both proofs and verifications of membership require trace-
able keys and no modification of existing keys is needed
when membership changes.

Finally, we note that we provide traitor tracing in the
sense of [15]. That is, if an adversary uses a compromised
user’s keys to engage in handshakes the adversary is not au-
thorized to perform, it is possible to trace the identity of the
compromised user by examining the handshake transcripts.

3. An Example

3.1. Preliminaries

Pairing-based cryptography is finding an ever-expanding
field of applications, ranging from identity-based encryp-
tion [6], to signature schemes [21, 7], to key agreements
[27]. In this paper, we use pairing-based cryptography to
perform secret handshakes.

Before we give an example of our protocol, we remind
the reader that pairing-based cryptography is based on bi-
linear maps over groups of large prime order. For example,
if G1 and G2 are two cyclic groups of some large prime or-
der q, then ê :G1×G1 −→G2 is called a bilinear map if for
all a,b ∈ Zq, P,Q ∈ G1 we have ê(aP,bQ) = ê(P,Q)ab.

Modified Weil and Tate pairings on supersingular ellip-
tic curves are examples of such bilinear maps that are effi-
ciently computable, non-degenerate,1 and for which the Bi-
linear Diffie-Hellman Problem is assumed to be hard, i.e.,
it is assumed that, given P,aP,bP,cP for random a,b,c ∈ Zq

and P ∈ G1, it is hard to compute ê(P,P)abc. Armed with
such a particular map ê and a hash function H1 : {0,1}∗ →
G1 that maps from arbitrary strings to points in G1, we can
now describe our secret handshake protocols by way of an
example.

3.2. Protocol Sketch

Let’s consider a user Alice who lives in a country with
a questionable human-rights record. The ministry of trans-
portation in that country possesses a master secret t ∈ Zq,
and issues driver’s licenses to all drivers who have passed
the driving test. For Alice, this license comes in the way of
a pseudonym and a secret point TA in G1. Let’s say Alice’s
driver’s license looks like this:

(“p65748392a”,TA)

where TA = tH1(“p65748392a-driver”). Alice can show
her pseudonym to anyone, but keeps her secret point secret.

The ministry for transportation also issues credentials for
traffic cops. Bob is such a traffic cop, and this is his traffic

1i.e., ê(P,Q) does not map to the identity for all P and Q
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cop credential:

(“xy6542678d”,TB)

where TB = tH1(“xy6542678d-cop”).
Alice is on her way to a secret meeting of a pro-

democracy movement of which she is a member. Since she
is late, she is speeding on the highway and gets pulled over
by Bob. Bob demands to see Alice’s driver’s license. Alice
wants to make sure that Bob is a real cop, and not an im-
postor. She therefore asks him for his pseudonym, which
he sends to her:

Bob
“xy6542678d”−−−−−−−−→ Alice

Alice, in return, sends her pseudonym to Bob:

Alice
“p65748392a”−−−−−−−−→ Bob

Now, Alice generates a session key KA by calculating

KA = ê(H1(“xy6542678d-cop”),TA)

By calculating the session key this way, Alice makes sure
that she will only end up communicating with Bob if he is a
real cop. Bob also calculates a session keyKB by calculating

KB = ê(TB,H1(“p65748392a-driver”))

A simple calculation, using the bilinear properties of ê,
shows that these two session keys are, in fact, the same.
Once Alice notices that she can communicate with Bob us-
ing her session key, she will be convinced that Bob is in-
deed a cop. Bob, on the other hand, will have learned that
Alice is a legitimate vehicle operator. Note that an impos-
tor Igor in Bob’s stead might have sent his own pseudonym,
but he would not have been in possession of a secret point
TI that corresponds to that pseudonym, and would therefore
not have been able to calculate the correct session key.

Alice gets away with a warning and drives off to her
meeting. The pro-democracy movement also has a master
secret m, and has issued all its members credentials. Alice’s
credential looks like this:

(“y23987447y”,MA)

where MA = mH1(“y23987447y-member”). At the meet-
ing she runs into Claire. Alice has never met Claire be-
fore and is worried that she might be with the secret police,
rather than the pro-democracy movement. Naturally, Claire
(who in fact is a legitimate member of the movement) has
the same worries about Alice. Neither of them wants to au-
thenticate herself as a member of the movement unless the
other one is a legitimate member herself. So Alice sends
her pseudonym to Claire, and receives Claire’s pseudonym

in return. Let’s say Claire’s pseudonym is k61932843u.
Alice calculates a session key as follows:

KA = ê(H1(“k61932843u-member”),MA)

Claire, on the other side, does the corresponding calculation
with Alice’s pseudonym and her own secret pointMC. Alice
and Claire then verify that they can communicate with each
other using their respective session keys, and are thus each
convinced that the other is a member of the secret move-
ment.

Alice now meets Dolores, and follows the same protocol
with her. Once she generates the session key with Dolores,
she encrypts a number N under that session key, and asks
Dolores to send her back N + 1. The reply she receives,
however, does not decrypt to N+ 1. Alice has now reason
to believe that Dolores is not, in fact, a legitimate member
of the movement. Alice can nonetheless rest assured that
Dolores learned nothing about Alice’s membership in any
secret organization. In fact, from Dolores’ point of view, the
secret handshake was indistinguishable from one in which
Alice had used, say, her driver’s license instead of her mem-
bership credentials for the secret movement.

We end this section with a few observations about the
above example. First, we point out that the protocol as pre-
sented above is a simplification of the actual protocol we’re
proposing in this paper. For a more detailed treatment of
our protocol, see Section 4. Second, our protocol can han-
dle mutual authentication of different roles (e.g., “cop” vs.
“driver”). In the driver’s license example, Bob presum-
ably has little incentive to hide his role from Alice, so a
more traditional authentication protocol would have done
the trick. Imagine, however, a scenario in which both roles
want to hide their identities. Let’s say Radio Liberty oper-
ates streaming audio servers inside Alice’s country, and Al-
ice is a subscriber to that service. The servers don’t want to
authenticate themselves as Radio Liberty outlets unless it’s
to a legitimate subscriber, and the subscribers don’t want
to authenticate themselves as Radio Liberty listeners unless
it’s to a real Radio Liberty server. It’s easy to see how our
protocol can handle this case. Lastly, in our example we did
not address such issues as revocation or linkability, which
are instead addressed in Section 7.

4. Secret-Handshake Schemes

4.1. Definitions

In this section we introduce the basic definition of a
secret-handshake scheme. A secret-handshake scheme op-
erates in a universe consisting of a set U of possible users,
a set G of groups in which users may be enrolled, and a set
A of administrators who create groups and enroll users in
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1. A
idA,nA−−−−−−−−−−−−−→ B

2. A
idB,nB,V0←−−−−−−−−−−−−− B

3. A
V1−−−−−−−−−−−−−→ B

The various symbols denote:

idA, idB : A’s and B’s chosen pseudonyms
nA,nB : random nonces, generated by A and B

V0 : H2(ê(H1(idA),privB)‖idA‖idB‖nA‖nB‖0)
V1 : H2(ê(privA,H1(idB))‖idA‖idB‖nA‖nB‖1)
H1 : Collision-resistant hash function from strings to G1

H2 : Collision-resistant hash function from strings to strings with fixed-length output, e.g. SHA-1
privA,privB : A’s and B’s secret points

Figure 1. PBH.Handshake

groups. (We note that the term “group” refers to a grouping
of users, rather than the mathematical definition of a group.)
These sets can be infinite, and do not need to be specified in
advance. A secret-handshake scheme SHS consists of the
following algorithms:

• SHS.CreateGroup : G →{0,1}∗
When SHS.CreateGroup(G) is executed by an admin-
istrator A ∈ A , a group secret GroupSecretG ∈ {0,1}∗
is output for the group G;

• SHS.AddUser : U ×G ×{0,1}∗ → {0,1}∗
When run by an administrator on input
(U,G,GroupSecretG), enrolls U in the group
G (denoted U ∈ G) by creating a user secret
UserSecretU,G ∈ {0,1}∗ to be given to the userU ;

• SHS.Handshake(A,B)
Specifies a protocol to be executed between users A
and B, which, upon completion2 ensures that B dis-
covers A ∈ G if and only if A also discovers B ∈ G;

• SHS.TraceUser : {0,1}∗ → U
An algorithm run by the system administrator, which,
given a transcript T of interaction of a userU with one
or more users, outputs the identity of the user whose
keys were used byU during the interaction.

• SHS.RemoveUser : {0,1}∗ ×U →{0,1}∗
On input (RevokedUserList,U), inserts U into
RevokedUserList.

2Note that this definition does not guarantee fairness: If A aborts the
protocol before sending his final message, he may learn whether or not
B ∈ G without revealing corresponding information about himself. This
will not a serious issue, however, as the security definitions in Section 5.1
will guarantee that A must be a member of G to learn anything about B in
this fashion.

To keep the presentation clear, we assume here that each
user is a member of exactly one group. All results gener-
alize to the case where users are allowed to join multiple
groups.

Ideally, if the execution of SHS.Handshake(A,B) estab-
lishes that A and B are members of the same group, it should
also have set up a temporary session key for securing further
communication between A and B. Although not required for
the security definitions below, this additional requirement is
satisfied by our schemes.

4.2. A Concrete Secret-Handshake Scheme

We now present a concrete secret-handshake scheme
based on bilinear pairings. We call this scheme Pairing-
Based Handshake (PBH).

Our system uses a computable, non-degenerate bilin-
ear map ê : G1×G1 −→ G2 for which the Bilinear Diffie-
Hellman Problem is assumed to be hard (see Section 3 for
definitions of these terms). Modified Weil or Tate pairings
on supersingular elliptic curves are examples for such maps.
We also assume there are two hash functions H1, H2 avail-
able: H1 : {0,1}∗ → G1 maps arbitrary strings to points in
G1, and H2 is a collision-resistant hash function taking ar-
bitrary strings as input (such as SHA-1).

PBH.CreateGroup. The administrator A sets the group se-
cret GroupSecretG to be a random number sG ∈ Zq (where
q is the order of both G1 and G2).

PBH.AddUser. To add a userU to the group G, the admin-
istrator A does the following: First, it generates a list of ran-
dom “pseudonyms” idU1, . . ., idUt ∈ {0,1}∗ for U , where
t is chosen to be larger than the number of handshakes U
will execute before receiving new user secrets. Since only
the administrator and the user itself know the identity U ,
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(s)

Administrator

idA = “x54321da”,
privA = sH1(“x54321da.air-marshal”)

Alice

id
B = “k82931lf”,

priv
B = sH

1 (“k82931lf.air-marshal-service”)

Bob

Alice Bob

…

idA, nA

idB, nB, V0

V1

Figure 2. Pairing-Based Handshake with Roles. The administrator issues credentials to users (left),
who then perform secret handshakes (right).

only the administrator and the user can link any idUi back
toU . The administrator then calculates a corresponding list
of secret points privU1, . . ., privUt as

privUi = sGH1(idUi)

where sG = GroupSecretG. This list of pseudonyms to-
gether with the list of secret points is given asUserSecretU,G

toU .

PBH.Handshake. Let A and B be two users who wish to
conduct a secret handshake. A pulls from his user secret an
unused pseudonym idA ∈ {idAi, . . . , idAt}, together with the
corresponding secret point privA. B likewise pulls idB and
privB. First, A sends his pseudonym, along with a random
nonce nA, to B (see Figure 1). B replies with her pseudonym,
a nonce nB of her choosing, and a value V0. A verifies that

V0 = H2(ê(privA,H1(idB))‖idA‖idB‖nA‖nB‖0)
and replies with V1 (message 3 in Figure 1) . B verifies

V1
?= H2(ê(H1(idA),privB)‖idA‖idB‖nA‖nB‖1)

If both verifications succeed3, then A and B can create a
shared secret S for future communication. A calculates the
shared secret like this:

S= H2(ê(privA,H1(idB))‖idA‖idB‖nA‖nB‖2)
B calculates the same shared secret S as:

S= H2(ê(H1(idA),privB)‖idA‖idB‖nA‖nB‖2)

PBH.TraceUser. Given a transcript of a handshake be-
tween user A and B, the administrator can easily recover

3They will either both succeed or both fail.

the pseudonyms idA and idB and look up which users these
pseudonyms had been issued to.

PBH.RemoveUser. To remove a user U from the group G,
the administrator looks up the user secret (idU1, . . . , idUt ,
privU1, . . . ,privUt) it has issued to U and alerts every other
user to abort any handshake should they find themselves
performing the handshake with a user using any pseudonym
idU ∈ {idU1, . . . , idUt}.

4.3. A Concrete Secret-Handshake Scheme with
Roles

While we defined secret-handshake schemes in terms of
group membership, we can easily extend the PBH scheme
to handle roles in the sense described in Section 1 and Sec-
tion 3. Here is a pairing-based secret-handshake scheme
with roles (PBH-R):

PBH-R.CreateGroup. This step is identical to
PBH.CreateGroup.

PBH-R.AddUser. Let R ∈ {0,1}∗ be an arbitrary string de-
scribing a role within group G. To add a userU to the group
G in role R, the administrator A does the following: First, it
generates random pseudonyms idUi ∈ {0,1}∗ for i= 1, . . . , t
(this is identical to PBH.AddUser). The administrator then
calculates the secret points privUi as

privUi = sGH1(idUi‖R)

where sG = GroupSecretG. The list of pseudonyms together
with the secret points is given as UserSecretU,G toU .

PBH-R.Handshake. Let A and B be using respective
pseudonyms idA and idB, their respective secret points privA
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and privB, and their respective roles RA and RB. First, A
sends his pseudonym, along with a random nonce nA, to B:

A
idA,nA−−−−−−−−−−−−−→ B

B decides that she only wants to perform a secret handshake
with someone in role R′A. She replies with her pseudonym,
a nonce nB of her choosing, and a value V0:

A
idB,nB,V0←−−−−−−−−−−−−− B

where

V0 = H2(ê(H1(idA‖R′A),privB)‖idA‖idB‖nA‖nB‖0)

A decides that he only wants to perform the handshake with
someone in role R′B. He verifies that

V0 = H2(ê(privA,H1(idB‖R′B))‖idA‖idB‖nA‖nB‖0)

and replies with V1:

A
V1−−−−−−−−−−−−−→ B

where

V1 = H2(ê(privA,H1(idB‖R′B))‖idA‖idB‖nA‖nB‖1)

B verifies

V1
?= H2(ê(H1(idA‖R′A),privB)‖idA‖idB‖nA‖nB‖1)

The two verifications either both succeed or both fail. If
they both succeed, then B has authenticated A as a member
of group G in role R′A = RA, and A has authenticated B as a
member of groupG in role R′B =RB. A and B can now create
a shared secret for future communication. A calculates the
shared secret like this:

S= H2(ê(privA,H1(idB‖R′B))‖idA‖idB‖nA‖nB‖2)

B calculates the shared secret like this:

S= H2(ê(H1(idA‖R′A),privB)‖idA‖idB‖nA‖nB‖2)

See Figure 2 for examples of PBH-R.AddUser and
PBH-R.Handshake.

PBH-R.TraceUser and PBH-R.RemoveUser. These steps
are identical to PBH.TraceUser and PBH.RemoveUser.

In the following formal treatment of secret handshakes,
we will only consider secret schemes without roles. All our
definitions, arguments, and security proofs, however, easily
extend to handshake schemes with roles.

A ↔ B

A B

M1

M2

M3

...

A ↔ R

A R

M1

r2 R {0, 1}|M2|

M3

...

Figure 3. Interaction between A and B com-
pared to interaction between A and a random
simulation R.

5. Security for Secret-Handshake Schemes

5.1. Definitions

Before defining security for a secret-handshake scheme,
we first introduce some auxiliary definitions.

Security Parameter: All primitives discussed in this
paper take an implicit security parameter. Typically, this
is the length of the prime modulus used in cryptographic
operations (in our case, the length of q).

Negligible: Informally, a function ε(t) is negligible when
ε(t)≈ 0 for big enough t. Formally, a function ε(t) is negli-
gible in t if for all polynomials p(·), ε(t)≤ 1/p(t) for suffi-
ciently large t. When t is the security parameter, we simply
say ε is negligible.

Random Simulation: A random simulation R of a par-
ticipant in a protocol replaces all outgoing messages with
uniformly-random bit strings of the same length. (See Fig-
ure 3.)

Interaction: We denote by A.Handshake(A,B) an al-
teration of SHS.Handshake(A,B) by an adversarial player
A. The adversary may choose to respond differently than
is specified in the original protocol, and may choose to ter-
minate the protocol early. What each party learns may be
different than in the original secret-handshake protocol.

We say that A interacts with B when A.Handshake(A,B)
is executed. When A executes a handshake with a random
simulation, we write this as A.Handshake(A,R), and say
that A interacts with a random simulation.

Group Member Impersonation

To motivate the following definitions, consider an adversary
A that has as its goal to learn how to impersonate mem-
bers of a certain group G∗. A interacts with players of the
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system, corrupts some users, communicates with legitimate
members of G∗, and eventually picks a target user U∗ and
attempts to convince U∗ that A is a member of G∗. Intu-
itively, if A does not obtain secrets for any other U ∈ G∗,
then it should remain unable to convinceU∗ of its member-
ship in G∗.

An additional property we would like our scheme to have
is the ability to trace the user secrets a successful adversary
might be using. We wish to argue that if A is able to con-
vinceU∗ that A∈G∗, then Amust be using secrets obtained
by some user U ∈ G∗, and the transcript of A’s interaction
with U∗ will allow an administrator to identify U . Conse-
quently,U may be placed on a revocation list to prevent the
adversary from further use ofU’s stolen secrets. We model
this by saying there is an efficient algorithm which, given
the transcript of A’s interaction with U∗ (but not necessar-
ily access to A’s internal state), extracts the identity of some
userU ∈G∗ whose secrets A has been using. This motivates
the definition of impostor tracing below.

We define the Member Impersonation Game for a ran-
domized, polynomial-time adversary A:

Step 1: The adversary A interacts with users of its choice,
and obtains secrets for some users U′ ⊆ U.

Step 2: A selects a target userU∗ �∈ U′ satisfyingU∗ ∈G∗.

Step 3: A attempts to convince U∗ that A ∈ G∗; that is, A
attempts to construct the correct responses in the pro-
tocol SHS.Handshake(A,U∗).

We say that A wins the Member Impersonation Game if
it engages correctly in SHS.Handshake(A,U∗) when U∗ ∈
G∗. We define A’s impersonation advantage AdvMIGA as
the following quantity:

AdvMIGA := Pr[ A wins Member Impersonation Game ].

We will also consider A’s conditional advantage restricted
to the occurrence of event E:

AdvMIGE
A :=Pr[A wins Member Impersonation Game

∣∣E ].

These probabilities are taken over the randomness in the
algorithms SHS.∗, the coin flips of A, and the coin flips of
all participating users.

We are ready to define two notions of security using the
Member Impersonation Game.

Impersonation Resistance: Suppose A never corrupts a
member of the target group G∗. Then U′ ∩G∗ = /0. The
secret-handshake scheme SHS is said to ensure imperson-
ation resistance if AdvMIGU′∩G∗= /0

A is negligible for all A.
In other words, if an adversary never corrupts a member

of its target group, it has only a negligible chance of imper-
sonating as a member of the target group.

Impersonator Tracing: Let T be a transcript of the in-
teraction of A and U∗. The secret-handshake scheme SHS
is said to permit impostor tracing when

∣∣Pr[SHS.TraceUser(T ) ∈ U′ ∩G∗]−AdvMIGA
∣∣

is negligible for all A.
In other words, with success probability very close to

that of the adversary, an administrator can determine which
user’s secrets A has obtained to perform its impersonation.

Group Member Detection

To motivate the following definitions, consider an adversary
A that has as its goal to learn how to identify members of a
certain group G∗. A interacts with players of the system,
corrupts some users, picks a target userU∗, and attempts to
learn ifU∗ ∈ G∗.

Intuitively, if A does not obtain secrets for any other
U ∈ G∗, then it should remain clueless when detecting
whetherU∗ ∈ G∗. In other words, the final interaction with
U∗ should yield no new information to the adversary unless
it has already obtained secrets from another member of G∗.

To model this formally, we consider the behavior of an
adversary in an environment where it is either allowed to in-
teract with its target user U∗ or it is instead presented with
a random simulation, and asking it to tell the difference. An
adversary unable to distinguish between U∗ and R quan-
titatively learns nothing new about U∗ (let alone whether
U∗ ∈ G∗). This motivates the definition of detection resis-
tance given below.

An additional property we would like our scheme to have
is the ability to trace which user’s secrets a successful ad-
versary is using. We wish to argue that if A is able to distin-
guish between R and some userU∗ ∈ G∗, then A must have
already corrupted some other userU ∈G∗, and thisU is re-
vealed by A. We model this by saying there is an efficient
algorithm which, given transcripts of A’s interaction with
the system (but not necessarily access to A’s internal state),
extracts the identity of some user U ∈ G∗ whose secrets A
has been using. This motivates the definition of detector
tracing below.

We define the Member Detection Game for a random-
ized, polynomial-time adversary A:

Step 1: The adversary A interacts with users of its choice,
and obtains secrets for some users U′ ⊆ U.

Step 2: A selects a target userU∗ �∈ U′.

Step 3: A random bit b←{0,1} is flipped.
Step 4: If b = 0, A interacts with U∗. If b = 1, A interacts

with a random simulation R.

Step 5: The adversary outputs a guess b∗ for b.
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We say that A wins the Member Detection Game when
b∗ = b. We define A’s advantage AdvMDGA as the follow-
ing quantity:

AdvMDGA := |Pr[A wins Member Detection Game]−1/2| .
We will also consider A’s conditional advantage restricted
to the occurrence of event E:

AdvMDGE
A :=

∣∣Pr[ A wins MDG
∣∣ E ]−1/2

∣∣ .
These probabilities are taken over the randomness in the
algorithms SHS.∗, the randomness of R, the coin flips of
A, and the coin flips of all participating users.

We are ready to define two notions of security using the
member detection game.

Detection resistance: Let GU∗ be the group to which
U∗ belongs, and suppose A never corrupts a member GU∗ .
Then U′ ∩GU∗ = /0. The secret-handshake scheme SHS is

said to ensure detection resistance if AdvMDG
U′∩GU∗= /0
A is

negligible for all A.
In other words, if an adversary never corrupts a member

of its target user’s group, it has only a negligible chance
of distinguishing the target user’s messages from random
strings.

Detector tracing: Let T be a transcript of the interaction
of A andU∗, and let GU∗ be the group to whichU∗ belongs.
The secret handshake scheme SHS is said to permit detector
tracing when∣∣Pr[SHS.TraceUser(T ) ∈ U′ ∩GU∗ ]−AdvMDGA

∣∣
is negligible for all A.

In other words, with success probability very close to
that of the adversary, an administrator can determine which
user’s secrets A has obtained to perform its unauthorized
detection.

5.2. Security of the Pairing-Based Handshake

We claim that if the Bilinear Diffie-Hellman problem is
hard, the simple Pairing-Based Handshake Scheme outlined
in Section 4.2 provably satisfies the security properties out-
lined in the previous section. We provide the statements
of security here; the security analysis is outlined in the ap-
pendix.

With straightforward modifications to the security analy-
sis, analogous security properties can be defined and shown
to hold for the secret-handshake scheme with roles outlined
in Section 4.3.

Hardness of BDH Problem: We say that the Bilinear
Diffie-Hellman Problem (BDH) is hard if, for all probabilis-
tic, polynomial-time algorithms B,

AdvBDHB := Pr[B(P,aP,bP,cP) = ê(P, P)abc]

is negligible in the security parameter. This probability is
taken over random choice of P ∈ G1 and a,b,c ∈ {1, . . . ,q}
where q is the order of G1.

We now state the security claims for the Pairing-Based
Handshake. We outline proofs of Theorems 1 and 4 in the
appendix. For this analysis we model the hash functions H2

and H1 as random oracles [4].
Let A be a probabilistic, polynomial time adversary. We

denote by QH2 the number of distinct queries A makes to
H2, and we denote by QH1 the number of distinct queries A
makes to H1. We write e ≈ 2.78 as the base of the natural
logarithm.

Theorem 1 Suppose A is a probabilistic, polynomial time
(PPT) adversary. There is an PPT algorithm B such that

AdvMIGA ≤ Pr[ PBH.TraceUser(T ) ∈ U′ ∩G∗ ]
+ e QH1QH2 ·AdvBDHB + ε,

where ε is negligible in the security parameter.

Intuitively, Theorem 1 says that the probability that an ad-
versary succeeds in the Member Impersonation Game is
less than the probability that he is traceable plus the prob-
ability that he can be used to solve the Bilinear Diffie-
Hellman problem.

The hardness of the BDH problem then implies the follow-
ing:

Corollary 2 (PBH Impersonator Tracing)
Suppose A is a probabilistic, polynomial time adversary.

If the BDH problem is hard, then∣∣Pr[PBH.TraceUser(T ) ∈ U′ ∩G∗]−AdvMIGA
∣∣

is negligible.

In other words, the Pairing-Based Handshake satisfies the
definition of Impersonator Tracing outlined in the previous
section.

Note that if U′ ∩G∗ = /0, then Pr[ PBH.TraceUser(T ) ∈
U′ ∩G∗] = 0. This immediately yields the following:

Corollary 3 (PBH Impersonation Resistance)
Suppose A is a probabilistic, polynomial time adversary.

If the BDH problem is hard, then AdvMIGU′∩G∗= /0
A is negli-

gible.

In other words, the Pairing-Based Handshake satisfies the
definition of Impersonation Resistance outlined in the pre-
vious section.

We now turn our attention to the Member Detection Game.
Using the notation from Section 4, we claim the following.
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Theorem 4 Suppose A is a probabilistic, polynomial time
adversary. There is an PPT algorithm B such that

AdvMDGA ≤ Pr[ PBH.TraceUser(T ) ∈ U′ ∩G(U∗) ]
+ e QH1QH2 ·AdvBDHB + ε,

where ε is negligible in the security parameter.

Intuitively, Theorem 4 says that the probability that an ad-
versary succeeds in the Member Detection Game is less
than the probability that he is traceable plus the probabil-
ity that he can be used to solve the Bilinear Diffie-Hellman
problem.

The hardness of the BDH problem then implies the follow-
ing:

Corollary 5 (PBH Detector Tracing)
Suppose A is a probabilistic, polynomial time adversary.

If the BDH problem is hard, then
∣∣Pr[PBH.TraceUser(T ) ∈ U′ ∩G(U∗)]−AdvMDGA

∣∣
is negligible.

In other words, the Pairing-Based Handshake satisfies the
definition of Detector Tracing outlined in the previous sec-
tion.

Note that if U′ ∩G(U∗) = /0, then Pr[PBH.TraceUser(T ) ∈
U′ ∩G(U∗)] = 0. This immediately yields the following:

Corollary 6 (PBH Detection Resistance)
Suppose A is a probabilistic, polynomial time adversary.

If the BDH problem is hard, then AdvMDG
U′∩G(U∗)= /0
A is

negligible.

In other words, the Pairing-Based Handshake satisfies the
definition of Detection Resistance outlined in the previous
section.

5.3. Additional Security Notions

In this section we consider several additional security no-
tions that may be desirable in a secret handshake scheme:
forward repudiability, indistinguishability to eavesdrop-
pers, collusion resistance, and unlinkability. Forward re-
pudiability is a desirable property that may optionally be
satisfied by a secret handshake scheme, and is in fact satis-
fied by our scheme. Indistinguishability to eavesdroppers,
collusion resistance, and unlinkability follow the security
definitions given in Section 5.1, and are discussed only for
completeness.

Forward Repudiability: Suppose honest users U1 and
U2 interact, and they both learn they are members of the

same group G. It should not be possible for U2 to prove to
a third party that U1 is a member of the group G – even if
U2 reveals its own secrets. For example, if U2’s secrets are
later compromised, the transcript ofU1 andU2’s interaction
together with U2’s secrets should not constitute a proof of
U1’s membership in G.

Note that U2 and U1 may not be able to conceal the
fact that they communicated (this might require the use of
steganographic techniques, and is outside the scope of this
paper). However, any evidence (transcripts, U2’s secrets,
etc) should not provide a non-repudiable proof that U1 is a
member of G. We refer to this as forward repudiability.

Forward repudiability is not achieved by schemes that
rely on credentials that support non-repudiation for the un-
derlying authentication. For example, consider a scheme
that gave every member of a group G a public-key certifi-
cate attesting to their group membership, and a shared group
secret key under which they could encrypt those certificates
to limit their exchange to only other group members. Such a
certificate, together with a transcript showing a demonstra-
tion of group membership using that public key would be
sufficient to publicly implicate the sender of the certificate
as a group member.

Forward repudiability follows immediately in our
scheme: notice that U2 always has enough information to
generate the entire transcript between U1 and U2. So this
transcript could have been completely faked byU2, and can-
not be used to convince a third party ofU1’s membership in
G.

Indistinguishability to Eavesdroppers: Consider an ad-
versary A who corrupts some set U′ of users, interacts with
others, and observes a transcript of SHS.Handshake be-
tween users U∗

1 , U
∗
2 �∈ U′ (possibly of A’s choice). The

adversary A should be unable to learn anything from this
handshake that it did not already know, including whether
U∗
1 andU

∗
2 belong to the same group or to different groups.

We model this by giving A either a transcript of the real
handshake between U∗

1 and U∗
2 , or giving it a transcript of

a handshake between random simulations, and asking it to
tell the difference.

We define A’s distinguishing advantage as follows. Let
TReal be the transcript of SHS.Handshake(U∗

1 ,U∗
2 ), and let

TRand be a transcript of SHS.Handshake(R,R). Define

AdvDSTA := |Pr[A(TReal) = 1]−Pr[A(TRand) = 1]| .
The secret-handshake scheme SHS is said to provide indis-
tinguishability to eavesdroppers when AdvDSTA is negligi-
ble for all adversaries A.

Our secret handshake scheme satisfies this additional se-
curity property; in fact, this follows from detection resis-
tance. A proof is outlined in the appendix.

Note that communication outside the protocol (e.g., the
presence of continued communication after the handshake)
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may reveal the success or failure of the protocol. Protecting
against such traffic analysis is outside the scope of our pa-
per; approaches such as steganographic techniques may be
appropriate in this context.

Collusion Resistance and Traitor Tracing: The system
must remain secure even if collections of users pool their se-
crets in an attempt to undermine the system (collusion resis-
tance); if a coalition of users manages to detect or imperson-
ate group members, it should be possible to detect at least
one member of the coalition (traitor tracing). Collusion re-
sistance and traitor tracing follow immediately from the def-
initions given in Section 5.1: a pool of colluding users can
be modeled as a virtual adversary that “corrupts” the set of
colluding users and uses their secrets. Nevertheless, this
security notion is worth restating because is the main rea-
son why variations of the traditional Diffie-Hellman based
key exchange protocol fail to produce a secret handshake,
helping to explain the motivation for using pairing-based
cryptography.

To see how collusion resistance breaks down in a Diffie-
Hellman-based analogue of this scheme, consider a scenario
in which Diffie-Hellman key agreement is used in a group
Z/NZ where N = pq is a product of two large primes. Al-
ice, a member of group GA, would have a private key xA
and a public key (gGA)

xA derived from her private key and
the secret group base gGA . By the hardness assumption of
the RSA problem, Alice is unable to compute the group se-
cret gGA as it would require computing the xAth root of her
public key.

Bob would have analogous quantities; an attempted se-
cret handshake would then be a standard Diffie-Hellman
key exchange between Alice and Bob and a verification
of its success. They would obtain a shared secret key
gxAxBGA

if and only if their secret group bases were equal, i.e.
gGA = gGB .

While it is tempting to use Diffie-Hellman based key
agreement to implement secret handshakes, this scheme is
trivially not collusion-resistant. If a set of members of GA

collude whose secrets xi satisfy gcd(x1, . . . ,xt) = 1, they
may compute α1, . . ., αt ∈ Z such that ∑αixi = 1. They
may then compute ∏i(g

xi
GA

)αi = gGA , giving them the un-
traceable group secret for GA. This gives them the ability to
detect and impersonate arbitrary group members untrace-
ably.

Unlinkability: The schemes presented in Section 4 spec-
ify that a user obtains a list of pseudonyms for one-time use.
This allows handshakes to be unlinkable: If an eavesdrop-
per sees two different handshakes performed by Alice, the
content of the handshakes alone are unlinkable

It may be desirable instead to have a system in which a
user reuses a single pseudonym together with a single secret
point in all handshakes. This prevents a user from running

out of pseudonyms, and dramatically decreases the size of
revocation lists that may be required for users.

This modification does not undermine the security of our
system. Indeed, all the security proofs go through with one
minor change. We must introduce the notion of a modi-
fied random simulation R(B) of a user B. The modified
random simulation of B randomizes all messages outgoing
from B except idB, the sole pseudonym used by B. Under
this slightly weaker notion of random simulation and result-
ing security definitions, the Pairing-Based Handshake with
pseudonym reuse is provably secure with slightly weaker
security bounds.

In our implementations discussed below, we are using
the more efficient, but linkable, version of the protocols.

6. Implementation

6.1. Secret Handshakes in TLS

Section 4.2 presented our basic PBH scheme. In prac-
tice, it would be preferable to incorporate such a secret-
handshake authentication scheme into widely used secure
communication protocols. We present here a method to
securely use a PBH protocol to authenticate the standard
SSL/TLS handshake [16], requiring only small modifica-
tions of two of the TLS handshake messages. To maintain
our proofs of security, we require only that the verification
values (H0 and H1 in the notation of section 4.2) each par-
ticipating party sends to the other to prove their ability to
compute the shared secret, are a keyed pseudorandom func-
tion (PRF) of: the shared secret, both parties’ identities, in-
dependent randomness contributed by each party, and some
factor that makes each party’s verification value different
from the other’s (thus forcing each to independently prove
possession of the shared secret).

Following the notation in section 4.2, we modify the
standard TLS handshake as follows: TLS begins with the
client (in our case, the initiating party) sending the server
(the responding party) a ClientHello message. This mes-
sage contains both a random nonce and a timestamp, which
together will correspond to nA in our PBH protocol. The
server responds with a ServerHello message, which con-
tains an independent nonce and timestamp generated by the
server, corresponding to nB. These messages provide the
exchanges of randomness needed by the PBH protocol.

The server then sends a ServerKeyExchange message,
which is typically used to exchange additional keying in-
formation necessary for anonymous or ephemeral key ex-
change methods. It contains an indication of the algorithm
being used (e.g., Diffie-Hellman), and a set of parameters
necessary for that algorithm (e.g., a Diffie-Hellman pub-
lic value and parameters). We modify that message for our
PBH scheme; the new message contains an indication that
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PBH is the algorithm being used and the server’s identity,
idB. The server then completes its portion of the exchange
by sending ServerHelloDone. The client then continues the
exchange by sending a ClientKeyExchange message, again
modified to contain an indication that a PBH scheme is
being used and the client’s identity, idA. Each participant
now has sufficient information to calculate the shared se-
cret, ê0 = ê(H(idA),privB) = ê(privA,H(idB)). We take ê0
to be the TLS pre-master secret, used to generate all further
encryption and authentication keys.

The remainder of the exchange is unchanged from the
standard TLS handshake. The parties exchange ChangeCi-
pherSpec messages, which indicate that they should begin
to use the keys and algorithms they have just negotiated.
They then exchange Finished messages, which contain the
verification values necessary to allow each of them to con-
firm that the other has correctly computed the pre-master
secret, ê0, and hence in our case, that the other is a member
of the desired group.

These verification values, which correspond to our H0

and H1, are computed as follows: first the pre-master secret
(pms) is used to compute a master secret (ms), using:

ms= PRFTLS(pms, “master secret”, randomc‖randoms)

where PRFTLS is the TLS keyed pseudo-random func-
tion PRFTLS(secret, label, seed),4 ‖ is concatenation, and
randomc and randoms are the random nonce and timestamp
structures exchanged in the ClientHello and ServerHello
messages, respectively. Each party then uses this master
secret to compute their own verification value (vvi), as:

vvi = PRFTLS(ms, labeli, MD5(hm)‖SHA1(hm))

where labelclient is “client finished” and labelserver is “server
finished”, and hm, or handshake messages is the concatena-
tion of all the previous messages sent by both parties during
the handshake.

The resulting protocol meets the security requirements
outlined above. The verification values are a keyed pseu-
dorandom function of the shared secret, ê0, the independent
randomness contributed by both parties, and the identities of
both parties. Each party’s verification value is different, be-
cause of the the requirement that each use a different labeli.

This combined protocol can be implemented very sim-
ply, as it makes no changes to the TLS message flow or
key derivation algorithm, and only requires small modifica-
tions to two existing TLS messages, which already come in
algorithm-specific variants.

4TLS’s PRF combines its arguments using SHA-1, MD5 and both
HMACSHA−1 and HMACMD5; details can be found in [16].

6.2. Implementation Choices

We implemented the pairing-based handshake protocol
described in Figure 1. We also implemented a secure trans-
port layer protocol following the TLS specification (i.e., we
generate MAC and cipher keys from the master secret the
same way TLS does, etc.).

The security parameters we use are the lengths of two
primes, p and q. Typical parameters would be 1024 bits for
the length of p and 160 bits for the length of q. We generate
the primes such that p= 12qr−1 (for some r large enough
to make p be the correct size)5.

The curve E we use is y2 = x3 +1. See [6] for a discus-
sion of the properties of this curve. To implement the hash
function H that maps random strings to points in E(Fp)[q],6

we simply seed a pseudorandom number generator with the
string we want to map, and then generate a pseudorandom
point in E(Fp)[q].

The bilinear map ê we used is the Tate pairing, with
some of the modifications and performance improvements
described in [3, 6].

6.3. Measurements

We ran our 100% Java implementation on a 1.8GHz Pen-
tium 4. The table below shows the handshake times for var-
ious parameter values, alongside RSA key sizes that are be-
lieved to deliver comparable security.

size of q size of p handshake comparable RSA
time key size

120 bits 512 bits 0.8sec 512 bits
160 bits 1024 bits 2.2sec 1024 bits
200 bits 2048 bits 11.8sec 2048 bits

These times can be cut in half by a slight alteration to
the secret handshake protocol. The protocol as presented in
Section 4.2 is designed to minimize the number of rounds.
As a result, the parties must compute the results Vi of their
respective Tate pairings in series. This may be optimized
by rearranging the protocol so that these computations can
instead be performed in parallel. This results in one addi-
tional message, but approximately halves the running time
of the protocol.

We believe that these running times can be substantially
improved. The running time of the protocol is dominated
by the computation of the Tate pairing, and we have not
yet implemented some of the performance enhancements
suggested in [3]. Furthermore, our current implementation

5Choosing q to be a Solinas prime (i.e., q= 2α ±2β ±1 for some α >
β > 1) could further improve the performance of our scheme.

6E(Fp)[q] is the set of solutions of E over Fp of order dividing q.
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Administrator

idA = “x54321da”,
privA = sH1(“x54321da.air-marshal-03/14/2003”)

Alice
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B = “k82931lf”,

priv
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1 (“k82931lf.air-marshal-service-03/14/2003”)

Bob

Alice Bob

…

idA, nA

idB, nB, V0

V1

Figure 4. Short-lived credentials: The rolemanager only issues credentials that are good for a certain,
short, period of time.

is purely written in Java. We expect future optimized im-
plementations to be comparable to RSA-based TLS hand-
shakes.

7. Practical Issues

7.1. User and Role Authorization

When a new user wants to assume a certain role in a
group, she gets a pseudonym and a secret point for that role
from the administrator. The new user may have to be au-
thorized to assume the role, in which case the administrator
has to perform user authorization. How this is done is or-
thogonal to the schemes presented in, and outside the scope
of, this paper.

7.2. Revocation

If a user of a system gets compromised and his secret
point stolen, then the thief of the secret point can imper-
sonate the compromised user, as well as authenticate other
users in the system (and learn their roles). To address this
problem, we need a revocation system.

PUBLIC-KEY REVOCATION LISTS. In Section 4.2 we ex-
plain how the administrator can publish public-key revoca-
tion lists that show which public keys should no longer be
trusted. This scales relatively well with the number of users
(it only requires work in the order of number of revoked
users) but introduces the well-known consistency problem
for Certificate Revocation Lists – we need to make sure that
all users have an up-to-date and correct view of the current
public-key revocation lists.

SHORT-LIVED CREDENTIALS. To address this consistency
problem, we could address revocation using short-lived cre-
dentials (borrowing an idea from [6]). In addition to fold-
ing the user’s role into her secret point (see Section 4.3),
the administrator could also fold in the date at which the se-
cret point is valid, as shown in Figure 4 (compare with Fig-
ure 2). With a slight modification in the secret-handshake
protocol (again, following the suggestions in [6]) users can
then make sure that their peers in the handshake protocol
use fresh keys.

Although users obtain new secret points in regular inter-
vals from the administrator, it turns out that they do not have
to re-authenticate themselves to the administrator. Using
identity-based encryption, or some other suitable scheme,
the administrator could just publish fresh credentials for un-
revoked users, encrypted under their current pseudonym.

7.3. Protocol Deployment

While we have proven that an observer of a secret hand-
shake between users U1 and U2 cannot learn whether they
belong to the same group at the end of the protocol, the
observer can certainly learn one thing – that U1 and U2 ex-
ecuted our protocol. In fact, if our scheme (as proposed)
is implemented as a TLS cipher suite, then the two parties
will exchange a cipher suite designator that clearly shows
that they wish to engage in a secret handshake. If a govern-
ment makes it illegal to perform our protocol, with penal-
ties similar to those of belonging to certain illegal groups,
then using our secret handshake protocol may actually bring
more problems than not using it.

Also, even though the observer would not be able to tell
whether U1 and U2 belong to the same group at the end of
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the protocol, he or she may actually learn more information
by monitoringU1’s andU2’s communications after the exe-
cution of the protocol. If they continue talking with each
other, then they were probably able to authenticate each
other as members of the same group. Furthermore, if it is
known that there exists only one group G that uses our se-
cret handshake scheme, then bothU1 andU2 must belong to
that group.

These and other practical deployment issues can be mit-
igated by using some form of anonymous communication,
which makes it hard to find out exactly who is engaging in
a secret handshake. However, anonymizers can be subject
to the same caveats (everybody has to use them, they must
not be illegal, etc.) as secret handshake protocols.

In summary, our secret handshake schemes provide the
best protection if the number of groups that are using it is
large. For example, if it were to become a TLS cipher suite
that was routinely used for secure discovery, then the above
concerns would be alleviated.

8. Conclusion

A secret-handshake mechanism is a mechanism that
would allow members of a group to authenticate each other
secretly. Because members of a group often play different
roles, a handshake scheme that allows members of a group
to authenticate not only the fact that they belong to the same
group, but also each other’s roles would be very desirable.

In this paper, we proposed a secret handshake scheme
that can be used by members of a group to authenticate each
other, as well as the roles they play in the group. Our proto-
col uses Weil or Tate pairings on elliptic curves, and takes
advantage of their bilinearity to compute unique shared se-
cret keys when two members perform a handshake.

We also proposed a formal definition of secure secret
handshakes, and outlined a proof that our scheme is secure
under this definition.

We are implementing our protocol as a new cipher suite
for TLS. Preliminary measurements show promising per-
formance, with security parameters comparable to 1024-bit
RSA yielding quite practical handshake timings.
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A. Security Analysis

In this section we outline proof sketches for the secu-
rity claims made in Section 5.2. We make use of only stan-
dard cryptographic assumptions: we work in the random or-
acle model [4], and assume that the Bilinear Diffie-Hellman
Problem is difficult for the elliptic curves we are using. We
recall the definition of the latter.

Hardness of BDH Problem: We say that the Bilinear
Diffie-Hellman Problem BDH is hard if, for all probabilis-
tic, polynomial-time algorithms B,

AdvBDHB := Pr[B(P,aP,bP,cP) = ê(P, P)abc]

is negligible in the security parameter. This probability is
taken over random choice of P ∈ G1 and a,b,c ∈ {1, . . . ,q}
where q is the order of G1.

The Game “GetPair”:
For a user U we denote by G(U) the group such that

U ∈ G(U). The following game is played similar to the
games outlined in Section 5.1 against the system outlined
on Section 4.2. In particular, there is a universe of users U
where each user U has a list of pseudonyms idU1, . . ., idUt
and corresponding secret points privU1, . . ., privUt satisfying

∀U∀i privUi = sG(U)H1(idUi)

where sG(U) is the group secret of G(U). For simplicity, we
assume t is large enough so that users do not exhaust their
supply of pseudonyms (as discussed previously, pseudonym
exhaustion can be dealt with by having a user contact the
group authority to obtain a new list of pseudonyms.)

An adversary is placed in an environment where it is al-
lowed to interact with users of its choice; it may corrupt a
set of users U′ ⊂ U, obtaining from each user U ∈ U′ ev-
ery pseudonym idUi and corresponding secret point privUi,
i= 1, . . . , t.

We define the game GetPair as the following:

Step 1: The adversary A obtains interacts with arbitrary
users and corrupts a set U′ of users; for each U ∈ U′,
the adversary obtains all pseudonyms idU1, . . ., idUt
and all secrets privU1, . . ., privUt .

Step 2: The adversary chooses a target userU∗ �∈ U′.

Step 3: The adversary, given idU∗ , outputs a pair (idA,e0)
for some idA �= idUi for allU ∈ U′ ∩G(U∗) and all i.

We say that A wins the game GetPair if the following equa-
tion holds:

e0 = ê(H1(idA), sG(U∗) ·H1(idU∗)). (1)

We define A’s advantage AdvGetPairA as

AdvGetPairA := Pr[A wins the game GetPair].

This probability is taken over the random choices for xi and
the random coin flips of A, U∗, and all other players in the
system.

We denote by QH1 the number of distinct queries A
makes to the random oracle H1. We write e ≈ 2.78 as the
base of the natural logarithm.

Lemma 7 Suppose A is a probabilistic, polynomial time
(PPT) adversary. There exists a probabilistic, polynomial
time algorithm B such that

AdvGetPairA ≤ e QH1 ·AdvBDHB+ ε,

where ε is negligible as a function of the security parameter.
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Proof Sketch: We define B as follows. B is given an
instance (P,aP,bP,cP) of the BDH problem, and wishes to
use A to compute ê(P, P)abc. The algorithm B simulates an
environment in which A operates, using A’s advantage in the
game GetPair to help compute a solution ê(P, P)abc to the
BDH problem.

Here is a high-level description of how the algorithm B
will work. B will “cook” the responses to all queries to
the random oracle H1 so that the resulting distribution re-
mains random, but any advantage A has in the game GetPair
will be used to compute a solution to the BDH problem. B
does this by using the point bP to create secret points for all
pseudonyms used in the system; except the pseudonym idA
used by the adversary, whose corresponding secret will be
derived from aP; and, the pseudonym idU∗ used in the last
step, whose corresponding secret will be derived from cP.

To set up, B picks random auxiliary group secrets s′G for
all groups G.

We must specify how B will answer queries given by A.
On a query H1(x), if a result has already been assigned to
H1(x) it is returned again. Otherwise, B flips a random
biased coin guess(x) ∈ {0,1} biased by some parameter δ
to be determined later:

guess(x) =
{

0 with probability δ,
1 with probability 1−δ.

The algorithm B then responds as follows:

• guess(x) = 0:
B picks a uniformly random rx ∈ {1, . . . ,q} and returns
H1(x) := rx · (aP).

• guess(x) = 1:
B picks a uniformly random rx ∈ {1, . . . ,q}. If x is a
pseudonym of an existing userU , then B sets H1(x) :=
rx ·s′G(U) ·(bP), otherwise it assigns x to an uncorrupted
userU and return the same.

In the first step, A obtains pseudonym/secret lists for
users of its choice. For a corrupted user U and for all
i = 1, . . . , t, B picks a random values for the idUi, random
values ridUi ∈ {1, . . . ,q}, and sets
H1(idUi) = ridUi · s′G(U) ·P, privUi = ridUi · s′G(U) · (bP).

In stage 2, A picks a target userU∗.
In stage 3, B responds with a random value for idU∗ and

sets H1(idU∗) := cP. Then A outputs (idA,e0).
If A never queried H1 on input idA, then H1(idA) is as-

signed a random value as described above.
Suppose guess(idA) = 0. Then H1(idA) = r · (aP) for

some value r known to B. B computes w := (rs′G(U∗))
−1

mod q and returns (e0)w as its solution to the BDH instance.
It is straightforward to check that if Equation 1 holds then
(e0)w = e(P,P)abc as desired.

A detailed analysis shows that if guess(idA) = 0 and
guess(x) = 1 for all queries x �= idA to H1, then the execu-
tion environment which B creates for A is indistinguishable
from the actual game GetPair except for an error probability
ε that is a negligible function of the security parameter.

It remains to optimize δ to maximize the success proba-
bility of B. We see

Pr[guess(idA) = 0 and guess(x) = 1
for all x �= idA] = δ · (1−δ)QH1 .

(2)

Using standard calculus we optimize δ to find δ ≈ 1/QH1 ;
plugging this back in to equation (2) results in Pr[(2)] ≥
1/(e ·QH1). The claim follows. �

We now restate the security claims for the Pairing-Based
Handshake as Theorems 8 and 9, and Corollary 10. We
outline proofs at the end of the appendix.

We denote by QH2 the number of distinct queries A
makes to the random oracle H2, and we denote by QH1 the
number of distinct queries A makes to the random oracle
H1. We write e≈ 2.78 as the base of the natural logarithm.

Theorem 8 Suppose A is a probabilistic, polynomial time
adversary. There is an PPT algorithm B such that

AdvMIGA ≤ Pr[ PBH.TraceUser(T ) ∈ U′ ∩G∗ ]
+ QH2 ·AdvGetPairB + ε,

where QH2 is the number of queries A makes to H2, and ε is
negligible in the security parameter.

Proof of Theorem 1: This follows from Theorem 8 and
Lemma 7.

We now turn our attention to the Member Detection
Game. Using the notation from Section 4, we claim the
following.

Theorem 9 Suppose A is a probabilistic, polynomial time
adversary. There is an PPT algorithm B such that

AdvMDGA ≤ Pr[ PBH.TraceUser(T ) ∈ U′ ∩G(U∗) ]
+ QH2 ·AdvGetPairB + ε,

where QH2 is the number of queries A makes to H2, and ε is
negligible in the security parameter.

Proof of Theorem 4: This follows from Theorem 9 and
Lemma 7.

Finally, we present the claim of eavesdropper indistin-
guishability for our scheme.
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Corollary 10 (PBH Eavesdropper Indistinguishability)
Suppose A is a probabilistic, polynomial time adversary.
There is a PPT algorithm B such that

AdvDSTA ≤ 2 ·QH2 ·AdvGetPairB+ ε,

where QH2 is the number of queries A makes to H2, and ε is
negligible in the security parameter.

Proof Sketch of Theorem 8: We construct an algorithm
B that plays the game GetPair. It creates an environment in
which A plays the Member Impersonation Game, and uses
the information from A to gain an advantage in the game
GetPair.

Since we model H2 as a random oracle, B can specify
how to answer queries to H2 as long as the resulting distri-
bution is random. If H2 has been queried for the first time
on input x, we generate a random result y, record (x,y), and
return y as the result. If H2(x) has been invoked already, we
find an entry (x,y) in the table and return y.

In step 1 of the Member Impersonation Game, A asks for
user secrets. B passes these through to the environment in
step 1 of the game GetPair.

In step 2, the adversary A picks a target group G∗ and
userU∗.

In step 3, A sends a message (idA,nA,V1) toU∗. Define

D := e(H1(idA),sG∗ ·H1(idU∗))‖idA‖idB‖nA‖nB‖0.
Awins theMember Impersonation Game exactly whenV1 =
H2(D).

Suppose idA = idUi for some U ∈ U′ ∩ G∗. Let
T be the transcript of A’s interaction with U∗. Since
idUi was uniquely assigned (with high probability),
PBH.TraceUser(T ) uses idUi to uniquely identifyU ∈ U′ ∩
G∗, and we are done.

Now suppose idA �= idUi for all U ∈ U′ ∩G∗. Since
the string D contains random nonces, with high probability
H2(D) has never appeared in any of A’s interactions with
the system. If A never queried H2 at any point with prefix
D, we may assign a random value to H2(D), independent of
A’s view. Then probability that V1 = H2(D) is negligible.

So we assume A queried H2(D) at some point during the
execution of the game. B chooses a random pair (x,y) from
the list of queries to H2, pulls the prefix e0 from x, and re-
turns e0 as its guess in the game GetPair. Suppose A made
QH2 queries of the random oracle H2. Then with probabil-
ity 1/QH2 , x=D, and B wins the game GetPair. The bound
follows. �
Proof Sketch of Theorem 9:

This follows as in the proof of Theorem 8, with the
following change: Instead of claiming that A must have
queried H2 at the point D in order to construct the message
V1, we claim that A must have queried H2 at D in order to

distinguishU∗’s messages from the random strings a simu-
lator would send. The rest of the analysis is similar. �
Proof Sketch of Corollary 10:

Suppose A is a PPT adversary with nonzero distinguish-
ing advantage. We build an algorithm A′ to play theMember
Detection Game.

We begin by starting the adversary A. Any request from
A to interact with users or obtain secrets from users is passed
through by A′, which is in Step 1 of the Member Detection
Game. When A picks users U∗

1 and U∗
2 , A

′ picks i ∈ {1,2}
and requests U∗ := U∗

i as the target user. It then acts as
a “man-in-the-middle” for the interaction between U∗

1 and
U∗
2 , and sends the resulting transcript to A. By a standard

hybrid argument, a distinguishing advantage AdvDSTA for
A translates to AdvMDGA′ = (1/2) ·AdvDSTA.

Without loss of generality, we will assume i = 2. No-
tice that the message idA′ sent by A′ to U∗

2 satisfies idA′ =
idU∗

1
. By the restriction on A, U∗

1 �∈ U′. So if T is
the transcript of the interaction of A′ with U∗

2 , we know
PBH.TraceUser(T ) =U∗

1 , implying

Pr[PBH.TraceUser(T ) ∈ U′ ∩G(U∗)] = 0.

The bound follows from Theorem 4. �
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