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Abstract. Three recent proposals for standardization of next-generation
ECC signatures have included “key prefixing” modifications to Schnorr’s
signature system. Bernstein, Duif, Lange, Schwabe, and Yang stated in
2011 that key prefixing is “an inexpensive way to alleviate concerns that
several public keys could be attacked simultaneously”.

However, a 2002 theorem by Galbraith, Malone-Lee, and Smart states
that, for the classic Schnorr signature system, single-key security tightly
implies multi-key security. Struik and then Hamburg, citing this theo-
rem, argued that key prefixing was unnecessary for multi-user security
and should not be standardized.

This paper identifies an error in the 2002 proof, and an apparently insur-
mountable obstacle to the claimed theorem. The proof idea does, how-
ever, lead to a different theorem, stating that single-key security of the
classic Schnorr signature system tightly implies multi-key security of the
key-prefixed variant of the system. This produces exactly the opposite
conclusion regarding standardization.
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1 Introduction

For certain types of discrete logarithm based systems, which we
dub “Schnorr-like” signature schemes, we have shown that the
security does not decrease with the number of users.

—Galbraith–Malone-Lee–Smart, 2002 [16]

For Schnorr and ECDSA type schemes, one does not need to
include the public key in the signing process, since security in
the multi-user setting is roughly the same as in the single-user
setting . . . —Struik, 2015 [35], citing [16]
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Most of the literature on signature-system security focuses on the problem of
forging messages under one targeted public key. However, the real-world attacker
actually sees many public keys, and presumably is happy if he solves the problem
of forging messages under any one of those keys. (For example, he wants to
take over somebody’s account to steal money, gain computer power, relay more
attacks, etc.) If the attacker has a noticeable probability of solving this problem,
then the signature system is protecting most users but not all users, and it is
difficult to argue that the signature system should be considered to be secure.

An attacker who solves the first problem, namely forging messages under one
targeted public key, can also solve the second problem in the same time and
with the same success probability: the attacker simply targets the first key and
ignores the remaining keys. The multi-key problem is therefore no harder than
the single-key problem.

What about the converse? Could the multi-key problem be easier than the
single-key problem? Perhaps switching from the single-key problem to the multi-
key problem gives the attacker an advantage, compared to the original problem.

For comparison, it is well known that for many secret-key protocols, such as
typical message-authentication systems, the attacker does gain a factor N in
switching from the single-key problem to the N -key problem; see, e.g., [4] and
[13]. This is one of the reasons that I recommend upgrading from 128-bit secret
keys to 256-bit secret keys. Similarly, if an attack against 256-bit elliptic curves
were discovered with cost only 2128/

√
N to break 1 of N signature keys for large

N , then I would recommend upgrading from 256-bit elliptic curves to larger
elliptic curves.3

Fortunately, for all of the signature systems considered in this paper, there are
no known multi-key attacks faster than single-key attacks. But does the absence
of any known speedup justify assuming that no speedup exists? Perhaps there
is a gap between the problems that cryptanalysts have been studying, such as
single-key security of 256-bit elliptic-curve signatures, and the problems that
actually matter for cryptographic users, such as multi-key security of 256-bit
elliptic-curve signatures. One can reasonably be worried about the possibility of
multi-key attacks, and about the lack of study of this possibility.

1.1. Previous work. This issue was directly tackled 13 years ago in a short
paper [16] by Galbraith, Malone-Lee, and Smart (henceforth “GMLS”). That
paper has two main results.

The first result states that, for any signature system, attacking N keys at once
cannot increase the attacker’s success probability by a factor above N . This has
an easy proof, which works as follows.

Say we have an N -key attack that, with probability p, successfully produces
a forgery. Consider the following 1-key attack:

3 For comparison, I am not at all concerned about the fact that well-known batch
discrete-logarithm algorithms (see, e.g., [15], [28], [21], and [11]) cost “only” 2128

√
N

to break all N of the 256-bit signature keys. The attacker cannot afford 2128
√
N ; the

attacker cannot even afford 2128; if cost is limited to, e.g., 2100 then these algorithms
have negligible chance of finding any discrete logarithms.
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• Generate a list of N − 1 new keys, by applying the standard key-generation
procedure N − 1 times.

• Insert the target key into the list at a random position.
• Run the N -key attack.
• When the N -key attack asks for a signature under the target key, apply the

target signing oracle.
• When the N -key attack asks for a signature under any of the N − 1 new

keys, apply the standard signing procedure.
• If the N -key attack successfully produces a forgery, and this forgery is under

the target key, then output the forgery.

The cost of the 1-key attack is practically identical to the cost of the N -key
attack. The success probability of the 1-key attack cannot be smaller4 than p/N .
In other words, the success probability of the N -key attack cannot be larger than
N times the success probability of the 1-key attack.

Unfortunately, this first result is unsatisfactory, precisely because it is not
tight. One can easily imagine N being 230 or even larger; increasing the attacker’s
success probability by a factor 230 could convert a minor concern into a critical
real-world threat.

The second GMLS result states that, for the Schnorr signature system and
more generally for “Schnorr-like” signature systems, attacking N keys at once
provides no advantage at all. The proof is not as obvious and is analyzed in
detail later in this paper.

This second result is completely satisfactory, eliminating any possibility of the
aforementioned gap. The limitation to “Schnorr-like” signature systems might
annoy theoreticians aiming for more generality, but practitioners seem happy
with these signature systems.

1.2. Standardization. Internet standards, such as the TLS standard used to
secure HTTPS connections, are maintained by the Internet Engineering Task
Force (IETF). IETF delegates research questions to its research arm, the Internet
Research Task Force (IRTF), and in particular delegates cryptographic questions
to part of IRTF, the Crypto Forum Research Group (CFRG).

For the last 18 months, about 3000 messages, the primary topic on the CFRG
mailing list has been elliptic-curve cryptography. For the last 6 months, about
700 messages, the primary topic has been elliptic-curve signatures. There have
been five specific proposals of signature systems and several “tweaks” of those
proposals.

The proposals vary in several choices, including “key prefixing”, explained in
Section 2. Three of the five signature proposals to CFRG use key prefixing, while
two do not. All of the key-prefixed proposals appear to stem from a 2011 paper

4 The GMLS paper claims that the probability is exactly p/N . In fact, the probability
could be larger: if one of the new keys happens to collide with the target key, then
a forgery under that new key will also be output as a successful forgery from this
algorithm, so there are 2 positions out of N that work rather than just 1 out of N .
What matters for the first result is that the probability is at least p/N .
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[9] by Bernstein, Duif, Lange, Schwabe, and Yang specifying the “Ed25519”
signature system. That paper does not present or cite security proofs related to
key prefixing, but nevertheless includes key prefixing as “an inexpensive way to
alleviate concerns that several public keys could be attacked simultaneously”.

In a CFRG message dated 4 September 2015, Struik [35] recommended against
key prefixing. “Ideally, signing should be possible without requiring the signer
to access its public key”, he wrote; and, finally bringing security proofs into the
discussion, he cited the GMLS paper to conclude that “one does not need to
include the public key in the signing process”. Hamburg [20] echoed Struik’s
recommendation, saying that “there is little gain” to key prefixing “in light of
the papers he cited”.

This story is obviously a triumph for provable security: a tight standard-
model security theorem is used to simplify and streamline cryptography that is
being standardized for real-world applications. Some designers guessed that key
prefixing would be helpful for security; but the choice of a standard is guided by
theorems rather than by guesses. The GMLS theorem shows that the intended
security goal is achieved without this unnecessary design element, so the design
element is eliminated, the same way that HMQV [27] “provably dispenses” with
some elements of MQV.

1.3. Contributions of this paper. This paper identifies an error in the GMLS
proof, and an apparently insurmountable obstacle to the claimed theorem.

On the positive side, this paper shows that the attacker’s probability of break-
ing any 1 of N signature keys in the key-prefixed variant of the Schnorr system
is at most the attacker’s probability of breaking a targeted signature key in
the classic Schnorr system. In other words, anyone who believes that the clas-
sic Schnorr system is secure in the single-key case also has to believe that the
key-prefixed variant of the system is secure in the multi-key case.

If the theorem claimed by GMLS were proven then it would trivially imply this
new theorem, by two different proofs, where one proof moves vertically and then
horizontally in the following diagram, and the other proof moves horizontally
and then vertically:

multi-key security of
classic Schnorr

easy +3 multi-key security of
key-prefixed Schnorr

single-key security of
classic Schnorr

GMLS claim

KS

new
theorem

.6

easy
+3 single-key security of
key-prefixed Schnorr

GMLS claim

KS

However, the vertical implications in this diagram are actually unproven and
presumably unprovable, leaving the new diagonal theorem as the only known
way to move from single-key security to multi-key security.
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What does this mean for key prefixing, assuming single-key security for the
classic Schnorr system? The new theorem says that key prefixing guarantees
multi-key security. The obstacle to proving the originally claimed theorem says
that without key prefixing there is no guarantee of multi-key security. The con-
clusion is clear: one should use key prefixing.

See Section 2 for definitions of the signature systems; Section 3 for the new
theorem; Section 4 for analysis of the GMLS error; and Section 5 for generaliza-
tions.

1.4. Standardization, revisited. After the announcement of this new theorem
(and of the obstacle to the originally claimed theorem), CFRG settled on a
signature system that includes key prefixing.

One can still characterize this story as a triumph for provable security: cryp-
tography equipped with a tight standard-model security theorem is standardized
for real-world applications, in preference to slightly more streamlined cryptogra-
phy that is not equipped with such a theorem. But what is particularly interest-
ing about the complete story is the reversal of recommendations: one moment
provable security is being used to justify a recommendation against key prefixing,
and the next moment provable security is being used to justify a recommendation
for key prefixing.

In retrospect the first recommendation can and should be dismissed as not be-
ing a valid example of provable security. There was a small error in the proof; this
error led to an erroneous claim of a theorem, which in turn led to an unjustified
recommendation regarding standardization. But this avalanche of errors raises
a much larger question: what protection does the cryptographic standardization
process have against errors in provable-security claims?

For comparison, the security impact of errors in programs is one of the central
topics in the security literature. The unfortunate reality is that user security can
be, and frequently is, compromised by accidental (or malicious) programming
errors anywhere in a very large trusted code base. Simply fixing each bug as it is
discovered obviously does not produce a secure system, whereas there is at least
some hope of obtaining a secure system through systematically (1) reducing the
amount of trusted code and (2) eliminating errors in the code that remains. See,
e.g., [5].

There is similarly widespread awareness that some provable-security claims
have errors,5 but the primary response consists of fixing each error as it is dis-
covered. There has been relatively little effort to understand and systematically
mitigate the security impact of a continuing series of errors.

A small portion of the provable-security literature has been formalized and
verified by proof-checking tools; see, e.g., [1]. Koblitz in [24] and [25] disputed

5 For example, a famous 2001 paper of Shoup [33] pointed out, and partially patched,
an error in a provable-security claim that had been published seven years earlier for
the “OAEP” system by Bellare and Rogaway [3]. Koblitz and Menezes have main-
tained a decade-long drumbeat of highlighting errors and limitations in provable-
security claims; their series of “Another look at provable security” papers [26] is, as
far as I know, the only serious survey of this quagmire.
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the value of such tools, and in particular wrote that the tools are “limited to
generating proofs for trivial steps”; but the GMLS error was inside a trivial
step, and I think that formally verifying the GMLS proof would have caught
this error. One can view this as an argument that standardization committees
should disregard provable-security claims that have not been formally verified.
A counterargument is that formal verification is expensive, probably infeasible
to carry out at the required scale, although focusing standardization efforts on
a smaller number of cryptographic constructions might make it feasible.

In [6] I argued, for other reasons, that security proofs should not be advertised
to users selecting cryptographic systems, although they are sometimes “a useful
guide to cryptanalysts”. With this approach, a standardization committee de-
ciding between the original Schnorr system and the key-prefixed variant would
ask cryptanalysts about the safety of the two systems. Part of the job of the
cryptanalysts is to consider multi-key security, and it’s easy to see that key pre-
fixing blocks some potential attack strategies against multiple keys, so if there
isn’t literature exploring the limits of those attack strategies then cryptanalysts
will naturally recommend key prefixing as the conservative choice. It’s possible
that the GMLS paper would have convinced cryptanalysts that key prefixing
isn’t useful, but my experience is that cryptanalysts are skeptical of security
proofs and are unlikely to rely on them without first verifying them; there is an
important difference in incentives between provers and cryptanalysts. Similarly,
the proof in this paper would have to survive the cryptanalyst filter before it
could influence the standardization process.

Perhaps cryptanalysts will actually take the time to study multi-key Schnorr
and conclude that it’s just as safe as single-key Schnorr, whether or not there’s a
security proof. In other words, it could turn out that the GMLS error is hard, or
impossible, for an attacker to exploit. This is analogous to the well-known fact
that an error in the trusted code base is not necessarily a security hole; many
errors are hard, or impossible, to exploit. On the other hand, it could also turn
out that multi-key Schnorr really does lose security. The broader point is that
blindly trusting claims of provable security is obviously not a safe way to select
cryptographic standards.

2 A generalization of the Schnorr signature system

This section presents a parametrized family of signature systems that includes
(1) the classic Schnorr signature system and (2) the key-prefixed variant of the
system.

2.1. Signature systems. A signature system, by definition, consists of four
sets and three algorithms satisfying one condition. The four sets are a set {k}
of “secret keys”, a set {K} of “public keys”, a set {M} of “messages”, and a set
{Σ} of “signatures”. The three algorithms are as follows:

• Gen (“key generation”). Inputs: none. Outputs: a public key and a secret
key.
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• Sign (“signing”). Inputs: a message and a secret key. Output: a signature.
• Verify (“verification”), required to be deterministic. Inputs: a message, a

signature, and a public key. Output: True or False.

The condition is that Verify(M,Σ,K) = True whenever Gen() = (K, k) and
Sign(M,k) = Σ; i.e., verification accepts any signature produced by signing,
under any keys produced by key generation.

Beware that several variations of this definition appear in the literature. Some-
times Sign is allowed to maintain state, i.e., to output a new secret key that is
then used as a replacement for the original secret key; see, e.g., the original
Goldwasser–Micali–Rivest [19] definition of signature systems, or more recent
papers on hash-based signatures. Sometimes Sign is allowed to fail after a spec-
ified number of signatures. Sometimes Sign and Verify are allowed to abort,
begging the question of what a user is supposed to do for messages that trigger
the abort. Sometimes Gen takes a “security parameter” as input. Sometimes
cost limits are placed on Gen, Sign, and Verify as part of the definition, rather
than as part of subsequent cost analyses.

2.2. Invalid inputs. In typical formalizations of algorithms, inputs and outputs
are required to be strings, so the sets above are also required to be sets of strings.
People defining signature systems conventionally assume that the inputs are in
the specified sets. This leaves unspecified what the algorithms do if inputs are
“invalid”, i.e., not in the specified sets.

Invalid inputs can trigger security failures even for algorithms that are believed
to be secure for valid inputs. Obviously one can build artificial attack examples
where, e.g., providing a non-message as input convinces Sign to reveal its secret
key, or providing a non-signature as input convinces Verify to output True no
matter what the message is. For non-artificial attack examples on other protocols
see, e.g., [12] and [29]. The signature systems in this paper allow all strings as
messages, so there is no issue for Sign in these systems, but the specifications of
Verify include explicit checks for invalid inputs.

The usual arguments for assuming input validity are that (1) this shortens
the algorithm statements and (2) implementors can (for every commonly used
set) easily add checks for valid inputs. The main counterargument is that this
hides from the reader an algorithm component that often has an impact on
speed, simplicity, and most importantly security; omitting critical checks from
algorithm statements is encouraging the implementor to shoot himself in the
foot. See [22] for a recent attack using invalid inputs to steal secret keys from
two widely deployed ECDH implementations.

2.3. Classic Schnorr signatures. Fix a positive integer g; a prime number `;
a group G ⊆ {0, 1}g of size `, written additively (binary operation +, neutral
element 0, inversion −); a nonzero element B of G; and a deterministic algorithm
H : {0, 1}∗ → Z/`. Here Z/` is the ring of integers modulo `. Define s = dlog2 `e,
and for each k ∈ Z/` define k ∈ {0, 1}s as the s-bit little-endian representation
of the unique representative of k in {0, 1, . . . , `− 1}.
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Note that G is self-delimiting (i.e., the concatenation RM for R ∈ G and
M ∈ {0, 1}∗ determines the pair (R,M)), since it consists entirely of g-bit strings.
Similarly, the set {k : k ∈ Z/`} is self-delimiting.

The classic Schnorr signature system with group G, base point B,
and hash function H, denoted SchnorrG,B,H , is defined as follows. Note that
the other parameters g, ` above are determined by G and thus do not need to
be included in the notation: the elements of G (e.g., 0) are g-bit strings for a
unique g, and ` is the number of elements of G.

The set of secret keys is {k : k ∈ Z/`}. The set of public keys is G. The set of

messages is {0, 1}∗. The set of signatures is {0, 1}2s. Gen() works as follows:

• Generate a uniform random k ∈ Z/`.
• Compute K = kB.
• Return (K, k).

Sign(M,k) for k ∈ Z/` works as follows:

• Generate a uniform random r ∈ Z/`.
• Compute R = rB.
• Compute C = H(RM).
• Compute S = r+Ck. (Note that SB = rB+CkB = R+CK, since `B = 0.)
• Return CS.

Verify(M,Σ,K) works as follows:

• Find the unique (C, S) ∈ (Z/`)2 such that Σ = CS. If no such (C, S) exists,
return False.

• If K /∈ G, return False.
• Compute R = SB − CK.
• If C 6= H(RM), return False.
• Return True.

If Gen() = (K, k) and Sign(M,k) = Σ then Σ has the form CS by definition
of Sign, so the first step of Verify does not return; K ∈ G, so the second step
of Verify does not return; R in the third step of Verify is the same as the R
computed in Sign; and C = H(RM) by definition of Sign, so the fourth step of
Verify does not return. Hence Verify(M,Σ,K) = True.

2.4. Key prefixing. Key prefixing is a generic transformation that converts any
signature scheme into what I call a “key-prefixed” signature scheme. In short,
a key-prefixed signature scheme inserts the public key in front of the message
before signing or verifying it.

Key prefixing was described by Menezes and Smart in [30, proof of Theorem 6]
as obviously eliminating “key-substitution attacks”. Menezes and Smart argued
that preventing these “attacks” is useful, even though these “attacks” do not
violate the standard definition of signature security. On the other hand, Menezes
and Smart did not argue that key prefixing was useful for Schnorr signatures:
[30, Theorem 7] states (under standard hypotheses) that Schnorr signatures
without key prefixing already resist key-substitution “attacks”.
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Key prefixing for a Schnorr-like signature system was later recommended in
[8], as discussed in Section 1.

2.5. Key-tag prefixing. For Sections 3 and 4 it is useful to consider a more
general transformation. This transformation is parametrized by a positive integer
t and a deterministic algorithm Tag : {0, 1}∗ → {0, 1}t; what the transformation
does is insert Tag(K) in front of M . Formally, for any signature system X, the
transformed signature system Tag +X is defined as follows:

• The transformed set of secret keys is the set of all concatenations T k where
T ∈ {0, 1}t and k is in the original set of secret keys.

• The transformed set of public keys is the original set of public keys.
• The transformed set of messages is the set of all strings M such that, for

every t-bit string T , the concatenation T M is in the original set of messages.
• The transformed set of signatures is the original set of signatures.
• The transformed key-generation algorithm GenTag calls the original key-

generation algorithm Gen, obtaining (K, k), and returns (K,Tag(K)k).
• The transformed signing algorithm SignTag, on input (M,T k) where T ∈
{0, 1}t, returns the output of Sign(T M, k).

• The transformed verification algorithm VerifyTag, on input (M,Σ,K), re-
turns the output of Verify(Tag(K)M,Σ,K).

It is easy to check that Tag +X is a signature system. The output of GenTag

has the form (K,Tag(K)k), and SignTag(M,Tag(K)k) has the same output Σ
as Sign(Tag(K)M,k). This output satisfies Verify(Tag(K)M,Σ,K) = True and
therefore satisfies VerifyTag(M,Σ,K) = True.

One special case is that Tag is injective on the set of public keys; this trans-
formation is then, by definition, key prefixing. Another special case that t = 0,
i.e., Tag = Empty, where Empty is the unique function {0, 1}∗ → {0, 1}0; the
key-tag-prefixed signature system Empty +X with these empty tags is the same
as the original signature system X.

When the original signature system is the classic Schnorr signature system,
this transformation ends up replacing H(RM) with H(R Tag(K)M) in both
Sign and Verify, along with including Tag(K) in the secret key for use by Sign. If
very little space is available for the secret key then Tag(K)k can be compressed
to simply k, with Tag(K) = Tag(kB) recomputed from k on demand. The
same type of compression applies more generally to any signature system that
allows recomputation of K, or at least Tag(K), from k. I am not saying that
this recomputation is free; the cost of this recomputation was highlighted by
Hamburg in [20].

3 Security

This section builds a 1-key attack ReRandomizeN,Tag(A) against the classic
Schnorr signature system SchnorrG,B,H , using an N -key attack A against the
key-tag-prefixed system Tag + SchnorrG,B,H . The cost of ReRandomizeN,Tag(A)
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is practically identical to the cost of A, and Theorem 3.6 states that if the Tag
function is injective on G then the success probability of ReRandomizeN,Tag(A)
equals the success probability of A. In other words, key-prefixed Schnorr is at
least as secure against multi-key attacks as the classic Schnorr system is against
single-key attacks.

The special case ReRandomizeN,Empty(A) is, aside from irrelevant details,
exactly the construction given by GMLS. However, in the same special case,
the probability statement is wrong. Section 4 gives an example of an attack A
for which ReRandomizeN,Empty(A) has success probability 0 while A has much
larger success probability.

3.1. Single-key security of signature systems. A 1-key attack A against a
signature system X receives two inputs: first, a public key K; second, an oracle
for M 7→ Sign(M,k). Here (K, k) is output by Gen. The attack is successful if
its output is (M,Σ,K) where

• M is a message,
• Σ is a signature,
• Verify(M,Σ,K) = True, and
• M was not a query to the oracle.

Define PrForge1,X(A) as the probability that A is successful over all coin flips
in Gen, in each call to Sign, and in A itself.

I have deviated slightly from the traditional syntax for attacks: specifically,
the attack is required to repeat the same public key K as part of its output.
This has the notational advantage that a 1-key attack is, as one would expect,
the special case N = 1 of an N -key attack, defined below.

3.2. Multi-key security of signature systems. An N -key attack against a
signature system X receives 2N inputs: public keys K1,K2, . . . ,KN and oracles
O1, O2, . . . , ON , where Oi is an oracle for M 7→ Sign(M,ki). Here each (Ki, ki)
is an independent uniform random output from Gen. The attack is successful
if its output is (M,Σ,K ′) where

• M is a message,
• Σ is a signature,
• K ′ ∈ {K1,K2, . . . ,KN},
• Verify(M,Σ,K ′) = True, and
• M was not a query to Oi for any i with Ki = K ′.

Define PrForgeN,X(A) as the probability that A is successful over all coin flips
in the N calls to Gen, in each call to Sign, and in A itself.

Note that M is allowed to have been a query to Oi if Ki 6= K ′. For example,
asking a user to sign a message, and then figuring out a signature of the same
message under another user’s key, does count as a successful attack. However,
if the keys happen to collide then this does not count as a successful attack.
This key-collision convention makes the theory cleaner (otherwise the attack
output needs to be tagged with the index of the victim user, and the probability
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statement for ReRandomize becomes more complicated), and it does not matter
for users: key collisions from legitimate runs of Gen are extremely rare for any
signature system of interest.

The GMLS security defintions in [16, page 264] do not make clear what hap-
pens if keys collide: the definitions refer to, e.g., “the signing oracle corresponding
to the key” as if this were necessarily unique. However, outside this rare case,
the definitions in [16] do clearly say that M “may have been a query to any of
the other signing oracles”.

3.3. The reduction. Let A be an N -key attack against Tag + SchnorrG,B,H .
Define a 1-key attack ReRandomizeN,Tag(A) against SchnorrG,B,H as follows.

Generate independent uniform random r1, r2, . . . , rN ∈ Z/`. Compute K1 =
K + r1B, K2 = K + r2B, and so on through KN = K + rNB, where K is the
input key. Note that K1,K2, . . . ,KN are independent uniform random elements
of the group G. Also compute Tag(K1),Tag(K2), . . . ,Tag(KN ).

Recall the definition of SchnorrG,B,H : the input oracle O, on input M , gener-
ates a uniform random element R ∈ G and returns CS where C = H(RM) and
SB = R+ CK. For each i ∈ {1, 2, . . . , N}, define oracle Oi as follows:

• Compute CS = O(Tag(Ki)M), where M is the input. (Now SB = R+CK
and C = H(R Tag(Ki)M).)

• Compute S′ = S + riC. (Now S′B = SB + CriB = R+ CKi.)
• Return CS′.

This oracle Oi has exactly the same output as a signing oracle for Ki in the key-
tag-prefixed system: it generates a uniform random element R ∈ G and returns
CS′ where C = H(R Tag(Ki)M) and S′B = R+ CKi.

Now run A on inputs K1,K2, . . . ,KN , O1, O2, . . . , ON . If the output of A
has the form (M,CS,K ′) for some (C, S) ∈ (Z/`)2, and there is some j ∈
{1, 2, . . . , N} such that Kj = K ′, then compute S′ = S − rjC and output
(Tag(Kj)M,CS′,K). Note that all Kj with Kj = K ′ have the same rj , so there
is no need to specify a choice of j when there are multiple possibilities.

3.4. Time. There is a standard convention of counting the time for the legitimate
user algorithms as part of the time of the attack (with the caveat that this
disregards, e.g., the real time saved from having many users generate keys in
parallel). With this convention, the time for ReRandomizeN,Tag(A) is practically
identical to the time for A, under minor hypotheses regarding the costs of group
operations etc.:

• Key generation: A receives N keys, which are generated with N scalar multi-
plications kiB. ReRandomizeN,Tag(A) receives one key, which was generated
with one scalar multiplication, and then adds N scalar multiples riB. For
all groups G of interest, the cost of addition is negligible compared to the
cost of scalar multiplication, so the cost of N + 1 scalar multiplications and
N additions is practically identical to the cost of N scalar multiplications.
Both A and ReRandomizeN,Tag(A) also involve N calls to the Tag function.
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• Signing: Each oracle call from A involves a scalar multiplication to gener-
ate R, a hash call with input R Tag(Ki)M , and some easy arithmetic in
Z/`. Each oracle call from ReRandomizeN,Tag(A) involves a scalar multipli-
cation to generate R, a hash call with input R Tag(Ki)M , and slightly more
arithmetic in Z/`, since the initially computed S is then adjusted to obtain
S′.

• Output: ReRandomizeN,Tag looks up K in a Ki table and performs some
easy final arithmetic in Z/`.

3.5. Success probability. The following theorem is the main theorem of this
paper. See Section 4 for the importance of the Tag-injectivity hypothesis.

Theorem 3.6. If Tag is injective on G then

PrForge1,SchnorrG,B,H
(ReRandomizeN,Tag(A)) = PrForgeN,Tag+SchnorrG,B,H

(A).

Proof. The public keys K1,K2, . . . ,KN computed by ReRandomizeN,Tag(A) are,
as noted above, independent uniform random elements of G, distributed iden-
tically to the public keys produced by N independent uniform random outputs
from Gen; and the oracles O1, O2, . . . , ON are the corresponding signing oracles.
The run of A inside ReRandomizeN,Tag(A) therefore succeeds with probability
exactly PrForgeN,Tag+SchnorrG,B,H

(A). I will show that ReRandomizeN,Tag(A)
succeeds if and only if A succeeds; consequently ReRandomizeN,Tag(A) succeeds
with probability PrForgeN,Tag+SchnorrG,B,H

(A) as claimed.
If ReRandomizeN,Tag(A) succeeds then it must have produced output of the

form (Tag(Kj)M,CS′,K), so A must have produced output (M,CS,Kj) with
S′ = S−rjC. Also Verify(Tag(Kj)M,CS′,K) = True, so C = H(R Tag(Kj)M)
where R = S′B−CK = SB−CKj ; consequently VerifyTag(M,CS,Kj) = True.
Finally, Tag(Kj)M was not a query to O, so M cannot have been a query to
Oi for any i with Ki = Kj : a query of M to Oi would have produced a query of
Tag(Ki)M to O, i.e., a query of Tag(Kj)M to O. In short, A’s output passes
verification, and the message was not a query to any signing oracle with the
same key.

Conversely, assume that A succeeds. Then A must have produced output of
the form (M,Σ,Kj) for some j, and this output must have passed verification;
i.e., Σ must have the form CS, where the group element R = SB − CKj

satisfies C = H(R Tag(Kj)M). ReRandomizeN,Tag(A) then produces output
(Tag(Kj)M,CS′,K) where S′ = S − rjC. This output passes verification since
R = S′B − CK.

All that remains is to show that Tag(Kj)M was not a query to O from
ReRandomizeN,Tag(A). This is where the injectivity of Tag is critical.

The queries from ReRandomizeN,Tag(A) to O all have the form Tag(Ki)M
′

where M ′ is a query from A to Oi; I’m using the notation M ′ here to avoid
confusion with the message M output by A.

Suppose that Tag(Kj)M was a query to O from ReRandomizeN,Tag(A). Then
Tag(Kj)M = Tag(Ki)M

′ for some query M ′ from A to some Oi. This implies
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Tag(Kj) = Tag(Ki) and M = M ′; Tag is injective on G by hypothesis, so
Kj = Ki; hence M was a query from A to Oi for some i with Kj = Ki. However,
the definition of success says that M was not a query from A to Oi for any i
with Ki = Kj . Contradiction. Hence Tag(Kj)M was not a query to O from
ReRandomizeN,Tag(A). ut

4 The importance of injectivity

This section analyzes the consequences for Theorem 3.6 if Tag is allowed to be
non-injective on G.

4.1. Injectivity on the set of generated keys. The critical step in the logic
is from Tag(Kj) = Tag(Ki) to Kj = Ki. This step does not need Tag to be
injective on all of G; it still works if Tag is injective on {K1,K2, . . . ,KN}.

For example, if N = 260 and t = 160, then a uniform random function Tag
collides on {K1,K2, . . . ,KN} with probability at most 260(260−1)/2161 < 2−41,
since there are at most 260 distinct elements of {K1,K2, . . . ,KN}. One can
reasonably argue that 2−41 is acceptable as an attack probability.

This approach will also work for any specific function Tag where the distri-
bution of Tag(K) is sufficiently well understood. Specifically, if the elements
of {0, 1}t are taken on by exactly D0, D1, D2, . . . , D2t−1 values of K respec-
tively, then two keys collide with probability

∑
iD

2
i /`

2, so N keys include a

collision with probability at most
(
N
2

)∑
iD

2
i /`

2. If Di ≤ D for each i then∑
iD

2
i ≤ D

∑
iDi = D` so N keys include a collision with probability at most(

N
2

)
D/`.

For example, say G is an encoding of points (x, y) ∈ {0, 1, . . . , q − 1}2 on a
complete twisted Edwards curve over a prime field Fq. Define Tag(K) as y mod
2t, viewed as a t-bit string, when K is the encoding of (x, y). Any particular
value of Tag(K) is consistent with at most dq/2te elements y ∈ {0, 1, . . . , q − 1},
and thus at most 2dq/2te elements K ∈ G. Hence N keys include a collision with
probability at most

(
N
2

)
2dq/2te/`. As a specific example, Ed25519 has q < 2255

and ` > 2252, so 260 keys include a collision with probability below 2−37 for
t = 160.

4.2. Empty tags. The approach above obviously breaks down for short tag
lengths, and in particular for empty tags. The problem goes far beyond one
step in the logic: if tags collide then the important conclusion—namely, that
ReRandomizeN,Tag(A) succeeds if A succeeds—is simply wrong. As an extreme
example, take empty tags, and consider the following very slow 2-key attack A:

• Ask the first key for a signature of the message “yes”.
• Use the baby-step-giant-step algorithm to compute the discrete logarithm of

the second key.
• Apply the normal signing procedure to forge a signature of the message “yes”

under the second key.
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This attack A has success probability almost exactly 1: specifically, A succeeds
if and only if the two keys are distinct, and this occurs with probability exactly
1 − 1/`. However, the attack ReRandomize2,Empty(A) has success probability
exactly 0: it outputs a signature of “yes”, but that’s not a forgery, since earlier
it asked for a signature of “yes”.

4.3. Other reductions. Could ReRandomize be modified somehow to work for
empty tags? The obstacles are formidable:

• The signature system hashes messages, and I can’t imagine how the reduction
could modify hash inputs, so the reduction will have to produce a forgery
on the same message “yes” forged by A.

• For this to be a forgery, the reduction has to retroactively avoid asking for
a signature on “yes”. How can the reduction predict that “yes” will be the
message to be forged?

• Even if the reduction does somehow predict this, how will it answer A’s
signing query for “yes” from the first user? The reduction can’t simply skip
that query—maybe A actually does some interesting computation on the
signature result, influencing its final output.

The original GMLS paper doesn’t try to address any of these obstacles. It writes
down essentially ReRandomizeN,Empty(A), and correctly observes that success
in A implies that the output of ReRandomizeN,Empty(A) is a valid signature.
It then leaps to the conclusion that the output is a “valid forgery”, without
checking whether the message was signed before.

4.4. Possible paths forward. To summarize, it is unclear whether the classic
Schnorr signature system is as secure for multiple keys as for a single key. Here
are several possible ways to gain clarity:

• Somehow find a way around the above obstacles and build a security proof.
I don’t expect this to happen.

• Formalize the obstacles by constructing an artificial (G,H) for which the
system is less secure for multiple keys than for single keys. Unfortunately,
the value of such a formalization is quite unclear: it leaves open the possibility
of a security proof for real-world choices of (G,H). For comparison, Shoup in
[33, Section 5] presented a similar formalization of an obstacle to a generic
security proof for OAEP, but in [33, Section 7.2] presented a security proof
for the specific OAEP construction of maximum interest, namely RSA-3-
OAEP.

• Find an actual multi-key attack against the system with real-world choices
of (G,H).

• After serious cryptanalytic attention to possible multi-key attacks against
the system, conclude that the system is in fact secure for multiple keys,
despite the lack of a security proof.

The only possibilities that would build confidence in the security of the system
are the first and last possibilities, both of which seem quite far from the current
situation. Clearly the safest recommendation is to switch to the key-prefixed
variant of the system.
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5 Generalizations

In previous sections I focused on the classic Schnorr signature system and its key-
tag-prefixed variant. However, there are several reasons that modern signature
systems have deviated in further ways from Schnorr’s system; see generally [7]
for background. This section briefly analyzes the multi-key security of a broader
class of signature systems.

5.1. Derandomization. Instead of generating r as a uniform random element
of Z/`, a derandomized signer generates r as F (z,M), where z is another secret
key.

If the random function M 7→ F (z,M) is indistinguishable from a uniform
random function {0, 1}∗ → Z/`, a standard “PRF” design goal, then the de-
randomized signer is indistinguishable from a signer that generates a uniform
random r for each M , while remembering which r was used for each M . Carry-
ing out an attack against a derandomized signer is thus indistinguishable from
carrying out a restricted attack against a classic signer, where the restriction is
that the attack does not ask for multiple signatures on the same message.

In the multi-key setting, consider N signers with secrets z1, z2, . . . , zN , where
the ith signer generates r as F (zi,M). Indistinguishability of these signers from
classic signers, with the same restriction of asking each signer for at most one
signature on each M , follows from indistinguishability of the function i,M 7→
F (zi,M) from a uniform random function. The latter indistinguishability is an
N -key version of the standard PRF goal; it cannot be broken with probability
more than N times larger than the probability of breaking the standard PRF
goal. There are many standard ways to design a PRF for a very high security
level using a large key z, absorbing the impact of this factor of N (for any
plausible size of N) and preserving the overall security of the signature system.

5.2. Key derivation. Ed25519 [8] and the more general EdDSA [10] actually
generate (k, z) by hashing a single master secret. The indistinguishability of these
outputs from independent uniform random secrets k and z is another standard
pseudorandomness assumption on the hash function. As above, there is at most
a loss factor of N in moving to N keys.

5.3. Limited key ranges. EdDSA has a parameter “n − c” specifying the
number of bits used for the secret scalar k. Obviously there are attacks if this
number of bits is chosen too small: specifically, [10] says that “kangaroo” attacks
find k using approximately 1.36

√
2n−c group additions.

If A is a 1-key attack that succeeds with probability p against keys chosen
uniformly from a restricted interval, say {0, 1, . . . , δ − 1} for some δ < `, then it
succeeds with probability at least (δ/`)p against keys chosen uniformly from the
entire set Z/`. This is acceptably tight for, e.g., δ/` ≈ 1/2 or δ/` ≈ 1/4.

However, a restricted interval has more serious consequences for the multi-key
security proof in this paper. ReRandomizeN,Tag produces N keys in the interval
{0, 1, . . . , δ − 1} with probability just (δ/`)N ; this is useless for large N as soon
as δ is noticeably smaller than `.
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A tighter reduction starts from a uniform random k in {0, . . . , β − 1}, and
then rerandomizes k as (k+ r1, k+ r2, . . . , k+ rN ) for independent uniform ran-
dom r1, r2, . . . , rN in {−β + 1,−β + 2, . . . , δ − 1}. This produces any particular

vector (k1, k2, . . . , kN ) ∈ {0, 1, . . . , δ − 1}N with probability 1/(δ+ β− 1)N , i.e.,
more than exp(−1) times uniform if one chooses β = dδ/Ne. Consequently the
N -key security of an interval of length δ is more than exp(−1) times the 1-key
security of an interval of length dδ/Ne.

This is still not tight. Could there be, e.g., an algorithm that finds 1 of N
discrete logarithms, each known to be in a particular interval of length ≈0.5`,
in time O(

√
`/N)?

To avoid having to think about this question, I suggest that signers take
enough bits to guarantee that the distribution of k is indistinguishable from the
uniform distribution on Z/`. For example, in Ed25519, ` is approximately 2252 +
2124.4, and taking n− c = 252 (specifically n = 255 and c = 3) is tantamount to
taking δ/` ≈ 1− 2−127.6, so (δ/`)N > 1− 2−50 even for N as large as 275.

5.4. More encodings of (R,C, S). In Schnorr’s system, the per-signature
group element R, hash C = H(RM), and integer S = r+Ck are transmitted as
CS; the verifier computes R as SB − CK and then checks that C = H(RM).

An alternative is to transmit RS. The verifier computes C = H(RM) and
checks that SB = R+CK. This alternative is used in, e.g., Ed25519 and EdDSA.

In both cases, the reconstruction of (R,C, S) is public. After verifying a sig-
nature in the form CS one also knows a signature in the form RS, and vice
versa. An algorithm to attack signatures in one form, for any number of keys, is
thus easily transformed into an equally effective algorithm to attack signatures
in the other form at practically identical speed.

5.5. More general linear equations. In Schnorr’s system, S is a linear combi-
nation of the per-signature secret r and the long-term secret k, with coefficients
1 and H(RM). More generally, one can replace the coefficients by any functions
of R and M , say H0(RM) and H1(RM). Given a signature RS, the verifier
checks that SB = H0(RM)R+H1(RM)K.

This is what GMLS call “Schnorr-like signatures”. The ReRandomize con-
struction is easily adapted to this level of generality. However, at least from a
security perspective, this generalization is content-free. One can easily encode
S as the ratio S′ = S/H0(RM) in Z/`; for any reasonable choice of H0 one
does not have to worry about the possibility of H0(RM) being zero. The ver-
ifier, given R and S′, now checks S′B = R + H(RM)K, where by definition
H(RM) = H1(RM)/H0(RM). In other words, this encoding of “Schnorr-like”
signatures is identical to classic Schnorr signatures for this function H.

Struik in [35] cited GMLS for “Schnorr and ECDSA type schemes”, but
GMLS say that “this definition of Schnorr-like signatures excludes the pop-
ular signature schemes DSA and ECDSA”. Recall that the ECDSA verifica-
tion equation is (H(M)/S)B + (x(R)/S)K = R, for a function x whose de-
tails are not relevant here; equivalently, H(M)B + x(R)K = SR; equivalently,
B = S′R + H ′(RM)K where S′ = S/H(M) and H ′(RM) = −x(R)/H(M).
This is an example of Schnorr except that S′ is in front of R rather than B.
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This change of position is important: there is no obvious way to adjust S for a
long-term rerandomization of K.
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