
DOI: 10.1007/s00145-006-0347-3

J. Cryptology (2007) 20: 51–83

© 2006 International Association for
Cryptologic Research

Secure Distributed Key Generation for
Discrete-Log Based Cryptosystems∗

Rosario Gennaro
IBM T.J. Watson Research Center,

P.O. Box 704, Yorktown Heights, NY 10598, U.S.A.
rosario@watson.ibm.com

Stanis�law Jarecki
School of Information and Computer Science,

University of California, Irvine, CA 92697-3425, U.S.A.
stasio@ics.uci.edu

Hugo Krawczyk and Tal Rabin
IBM T.J. Watson Research Center,

P.O. Box 704, Yorktown Heights, NY 10598, U.S.A.
{hugo,talr}@watson.ibm.com

Communicated by Matthew Franklin

Received 9 September 2003 and revised 2 August 2005
Online publication 19 May 2006

Abstract. A Distributed Key Generation (DKG) protocol is an essential component of
threshold cryptosystems required to initialize the cryptosystem securely and generate
its private and public keys. In the case of discrete-log-based (dlog-based) threshold
signature schemes (ElGamal and its derivatives), the DKG protocol is further used in
the distributed signature generation phase to generate one-time signature randomizers
(r = gk).

In this paper we show that a widely used dlog-based DKG protocol suggested by
Pedersen does not guarantee a uniformly random distribution of generated keys: we
describe an efficient active attacker controlling a small number of parties which suc-
cessfully biases the values of the generated keys away from uniform. We then present
a new DKG protocol for the setting of dlog-based cryptosystems which we prove to
satisfy the security requirements from DKG protocols and, in particular, it ensures a
uniform distribution of the generated keys. The new protocol can be used as a secure
replacement for the many applications of Pedersen’s protocol.

Motivated by the fact that the new DKG protocol incurs additional communication
cost relative to Pedersen’s original protocol, we investigate whether the latter can be
used in specific applications which require relaxed security properties from the DKG

∗ The results presented in this paper appeared in preliminary form in [GJKR2] and [GJKR3]. Work by the
third author was partially conducted while at the Department of Electrical Engineering, Technion, Haifa.

51

52 R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin

protocol. We answer this question affirmatively by showing that Pedersen’s protocol
suffices for the secure implementation of certain threshold cryptosystems whose security
can be reduced to the hardness of the discrete logarithm problem. In particular, we show
Pedersen’s DKG to be sufficient for the construction of a threshold Schnorr signature
scheme. Finally, we observe an interesting trade-off between security (reductions),
computation, and communication that arises when comparing Pedersen’s DKG protocol
with ours.

Key words. Threshold cryptography, Distributed key generation, Discrete logarithm,
VSS.

1. Introduction

Distributed key generation is a main component of threshold cryptosystems. It allows
a set of n servers to generate jointly a pair of public and private keys according to
the distribution defined by the underlying cryptosystem without ever having to compute,
reconstruct, or store the secret key in any single location and without assuming any trusted
party (dealer). While the public key is output in the clear, the private key is maintained as a
(virtual) secret shared via a threshold scheme. In particular, no attacker can learn anything
about the key as long as it does not break into a specified number of servers. This shared
private key can be later used by a threshold cryptosystem, e.g., to compute signatures or
decryptions, without ever being reconstructed in a single location. For discrete-log-based
(dlog-based) schemes, distributed key generation amounts to generating a secret sharing
of a random, uniformly distributed value x and making public the value y = gx . We
refer to such a protocol as DKG.

A DKG protocol may be run in the presence of a malicious adversary who corrupts
a fraction (or threshold) of the parties and forces them to follow an arbitrary protocol
of its choice. Informally, we say that a DKG protocol is secure if the output of the non-
corrupted parties is correct (i.e. the shares held by the good parties define a unique
uniformly distributed value x and the public value y satisfies y = gx), and the adversary
learns no information about the chosen secret x beyond what is learned from the public
value y.

Pedersen’s DKG Protocol. Solutions to the shared generation of private keys for dlog-
based threshold cryptosystems [DF] have been known and used for a long time. Indeed,
the first DKG scheme was proposed by Pedersen in [P1]. It then appeared, with various
modifications, in several papers on threshold cryptography, e.g., [CMI], [Har], [LHL],
[GJKR1], [HJJ+], [PK], and [SG], and distributed cryptographic applications that rely
on it, e.g., [CGS]. Moreover, a secure DKG protocol is an important building block in
other distributed protocols for tasks different than the generation of keys. One example
is the generation of the randomizers in dlog-based signature schemes (for example the r
value in an (r, s) DSS signature pair as in [GJKR1]). Another example is the generation
of the refreshing polynomial in proactive secret sharing and proactive signature schemes
[HJKY], [HJJ+], [FGMY].

The basic idea in Pedersen’s DKG protocol [P1] (as well as in the subsequent variants)
is to have n parallel executions of Feldman’s verifiable secret sharing (VSS) protocol
[Fel] in which each party Pi acts as a dealer of a random secret zi that it picks. The secret

Secure Distributed Key Generation 53

value x is taken to be the sum of the properly shared zi ’s. Since Feldman’s VSS has the
additional property of revealing yi = gzi , the public value y is the product of the yi ’s
that correspond to those properly shared zi ’s.

The Insecurity of Pedersen’s DKG. In this paper we show that, in spite of its use in many
protocols, Pedersen’s DKG cannot guarantee the correctness of the output distribution
in the presence of an adversary. Specifically, we show a strategy for an adversary to
manipulate the distribution of the resulting secret x to something quite different from
the uniform distribution.1 This flaw stresses a well-known basic principle for the design
of cryptographic protocols, namely, that secure components can turn insecure when
composed to generate new protocols. We note that this ability of the attacker to bias
the output distribution represents a flaw in several aspects of the protocol’s security. It
clearly violates the basic correctness requirement about the output distribution of the
protocol; but it also weakens the secrecy property of the solution. Indeed, the attacker
acquires in this way some a priori knowledge on the secret which does not exist when
the secret is chosen truly at random. Moreover, these attacks translate into flaws in the
attempted proofs of these protocols; in particular, they invalidate the standard simulation
arguments (à la zero-knowledge) as used to prove the secrecy of these protocols must
fail. For example, to argue that a threshold DSS scheme [GJKR1] is as secure as the
standard (i.e., centralized) DSS scheme, one needs to be able to simulate, for every given
value of a public key y in the centralized scheme, a run of the threshold scheme which
generates the same public key y. This requires that the threshold scheme will be able
to generate keys with the exact same distribution as in the centralized setting. However,
this is exactly what our attacker against Pedersen’s DKG is able to prevent. However, see
below for applications where Pedersen’s DKG suffices to guarantee security.

A New DKG Protocol with Guaranteed Uniform Output Distribution. We present a
new dlog DKG protocol that enjoys a full proof of security. We first present the formal
requirements for a secure solution of the DKG problem, then present a particular DKG
protocol and rigorously prove that it satisfies the security requirements. In particular,
we show that the output distribution of private and public keys is as required, and prove
the secrecy requirement from the protocol via a full simulation argument. Our solution
is based on ideas similar to Pedersen’s DKG (in particular, it also uses Feldman’s VSS
as a main component), but we are careful about designing an initial commitment phase
where each party commits to its initial choice zi in a way that prevents the attacker from
later biasing the output distribution of the protocol. For this commitment phase we use
another protocol of Pedersen, i.e., Pedersen’s VSS protocol as presented in [P2].

Our new DKG protocol preserves most of the efficiency and simplicity of the original
DKG solution from [P1]. There is however an increase in the round complexity: while
Pedersen’s protocol has one round of communication in the absence of faults, our new
protocol requires two rounds of communication. Moreover, each communication round
involves a reliable broadcast, which is a costly operation in a realistic setting like the

1 In a related paper, Langford [Lan] showed that in a careless implementation of Pedersen’s DKG the attacker
could influence the choice of the secret key. She [Lan] attempts to solve the problem, yet the suggested solution
is susceptible to our attacks.

54 R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin

Internet (see, e.g., [CP]). The new DKG protocol also requires about double the compu-
tation from each server. The computation and communication cost of the DKG protocol
is particularly important in cases in which the protocol is repeatedly invoked as in the
case of ElGamal-like signatures and proactive randomization.

Dealing with Non-Uniform Distribution on Keys. Motivated by the increase in per-
formance cost incurred by our new DKG protocol relative to the original Pedersen’s
solution, we investigate the question of whether the latter can be used in applications
with relaxed requirements on the DKG protocol. In particular, these must be applications
where deviation from uniformity is not a show-stopper. Interestingly, we show this to be
possible by first proving that Pedersen’s DKG is suitable for applications in which the
only security requirement is that the attacker cannot compute the generated secret key
x (namely, the attacker cannot learn the discrete logarithm of the DKG’s public output
y). Then we show that certain class of threshold schemes can be built using a DKG pro-
tocol that satisfies this property. These are threshold variants of (centralized) schemes
whose security can be proven to be equivalent to the hardness of computing discrete
logarithms. Concretely, we show how to prove secure a threshold version of Schnorr’s
signature scheme [S1] instantiated with Pedersen’s DKG protocol. We show that this
threshold scheme is secure by exhibiting a direct reduction of its security to the hardness
of computing discrete logarithms (thus avoiding the simulation step between the central-
ized and threshold scheme as discussed above which cannot be carried using Pedersen’s
solution). Technically, this proof extends the random-oracle-based proof technique from
[PS] to the threshold setting.

Which Protocol (and Proof Technique) to Prefer. As stated, there are some threshold
schemes that can be proven secure even when they are instantiated with Pedersen’s DKG
protocol. Of course they can also be proven secure using our new DKG protocol. So
which proof and protocol to prefer? A first observation deals with the use of the random
oracle model. In this model the hash function used in the scheme is modeled as a random
function in the security proof. This is clearly a mathematical abstraction that does not
hold in reality, and indeed it has been shown that proofs in the random oracle model
do not necessarily yield real security proofs [CGH]. Yet, a proof in the random oracle
model can be considered a strong heuristic argument in favor of the security of the
scheme. When using Pedersen’s DKG our security proof works by direct reduction to the
hardness of the discrete-log problem, however it does so in the random oracle model. On
the other hand, when using our new DKG scheme the security proof works by reduction
to the security of the centralized scheme, and dispenses with the random oracle model
(note, however, that the random oracle model may be used in the proof of the centralized
scheme).

The other main difference between the two protocols and their security proofs is
efficiency. The security proof we exhibit for the threshold Schnorr signature scheme
implemented with Pedersen’s DKG has a significant drawback: the security reduction to
the underlying hard problem is less efficient than the security reduction that exists for
the centralized version of this scheme. On the other hand, if one implements threshold
Schnorr signatures with our new DKG protocol, the reduction from the threshold scheme
to the centralized one is tight. Thus, in the latter case, if one carries out the reduction all

Secure Distributed Key Generation 55

the way to the discrete-log problem, the threshold scheme’s reduction is as efficient as the
centralized one. It is well known (see Section 6) that a less-efficient security reduction
implies the need to choose a larger security parameter, with a consequent increase in
the computational complexity of implementing the scheme. Thus our results suggest
an interesting trade-off between the increase in round complexity incurred by our DKG
protocol and the increase in computational complexity imposed by the security proof of
Pedersen’s DKG.

Other Applications. As we pointed out above, DKG protocols can be used to generate
randomizers in threshold versions of ElGamal-like signature schemes. This kind of
signature usually consists of a pair (r, s) where r = gk for a random value k ∈ Zq ;
in this case the DKG protocol is applied for the distributed computation of the value
r . Yet another application of DKG protocols arises in the setting of proactive security,
for example when implementing proactive secret sharing [HJKY] or signature schemes
[HJJ+]. These schemes were introduced to cope with “mobile adversaries” [OY] who
may corrupt more than t servers during the lifetime of the secret. In this setting time is
divided into periods and the security of the system is preserved as long as the attacker
does not simultaneously control more than t parties in any single time period. The main
tool for implementing such schemes is the use of proactive secret sharing in which secrets
are “refreshed” at the beginning of each period such that the resultant new shares are
independent of the shares in the previous period, except for the fact that they reconstruct
the same secret. Technically, this refresh is achieved by the parties running a DKG
protocol to create a random sharing of the value 0, and using these shares to randomize
(via addition) the shares of the secret key x held by the parties in the previous period.

Organization. Section 2 outlines the adversarial model used throughout the paper and
recalls some central secret sharing tools. Section 3 describes Pedersen’s DKG protocol
and our attack on it. In Section 4 we develop a formal definition of security for a (generic)
DKG protocol, and present the new DKG protocol together with a rigorous proof of its
security. Section 5 shows how the original Pedersen’s DKG can be used to implement
specific threshold signature schemes securely. We conclude with a detailed comparison
of efficiency trade-offs between the new and Pedersen’s DKG protocols in Section 6.

2. Preliminaries

2.1. Communication and Adversary Models

Communication Model

We assume that our computation model is composed of a set of n parties (or servers)
P1, . . . , Pn that can be modeled by polynomial-time randomized Turing machines. They
are connected by a complete network of private (i.e., untappable and authenticated)
point-to-point channels. In addition, the parties have access to a dedicated broadcast
channel.

We assume a partially synchronous communication model: computation proceeds in
synchronized rounds and messages are received by their recipients within some specified

56 R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin

time bound. To guarantee this round synchronization, and for simplicity of discussion, we
assume that the parties are equipped with synchronized clocks. Notice that, in this model,
messages sent from the uncorrupted parties to the corrupted ones can still be delivered
relatively fast, in which case, in every round of communication, the adversary can wait
for the messages of the uncorrupted parties to arrive, then decide on his computation and
communication for that round, and still get his messages delivered to the honest parties
on time. Therefore we should always assume the worst case that the adversary speaks
last in every communication round. In the cryptographic protocols’ literature this is also
known as a rushing adversary.

We note that this communication model (and the resultant stronger advesarial model)
is more realistic than the typically assumed fully synchronous model in which messages
of a given round in the protocol are sent by all parties, and delivered to their intended
recipients, simultaneously.

The Adversary

We assume that an adversary, A, can corrupt up to t of the n parties in the network, for
any value of t < n/2 (this is the best achievable threshold—or resilience—for solutions
that provide both secrecy and robustness). We consider a malicious adversary that may
cause corrupted parties to divert from the specified protocol in any way. We assume
that the computational power of the adversary is adequately modeled by a probabilistic
polynomial-time Turing machine. Our adversary is static, i.e., chooses the corrupted
parties at the beginning of the protocol.2 In addition, and as discussed above, the partially
synchronous communication model assumed in this paper results in a stronger adversary;
namely, one which chooses the messages sent by the corrupted parties at the end of each
communication round after having seen the messages output by the uncorrupted players
in that round. Yet, it is interesting to note that the attacks against known DKG protocols
that we show in Section 3 hold also against the weaker adversarial model which assumes
fully synchronized communication.

The Discrete-Log Assumption

A main computational assumption used throughout this paper is the infeasibility to com-
pute discrete logarithms. In particular, we assume that the attacker against the protocols
discussed here is unable to compute discrete logarithms modulo large primes. Specifi-
cally, we consider primes p for which there exists a large prime q dividing p − 1. The
concept of “large” can be defined precisely by fixing a security parameter k and choosing
p such that the lengths of both p and q grow polynomially with k. For any pair of prime
numbers p and q as above we denote by G the subgroup of elements of order q in Z∗p,
and use g to denote a particular generator of G. Given an element y ∈ G we can write
y = gx mod p for x ∈ [1..q]; the integer x is called the discrete logarithm of y with
respect to g. We use the notation s ∈R S to mean “the element s is chosen with uniform
probability from the set S.”

2 An extension of the results presented here to the setting of an adaptive adversary appears in [CGJ+]. See
also Section 4.4.

Secure Distributed Key Generation 57

Assumption 1 (Discrete-Log Assumption). Let PRIMES(k) be the set of pairs (p, q)
where p is a poly(k)-bit prime and q is a k-bit prime dividing p − 1. We assume that
for every probabilistic polynomial-time Turing machine TM, for every polynomial P(·),
and for sufficiently large k: if (p, q) ∈R PRIMES(k), g is an element of order q in Z∗p,
and x ∈R [1..q], then Pr(TM(p, q, g, gx) = x) ≤ 1/P(k).

The assumption can be strengthened by assuming that it holds for every prime pair (p, q),
and not for a randomly chosen one.

2.2. Secret Sharing Tools

We recall three secret sharing protocols which we use throughout the paper.

Shamir’s Secret Sharing

In Shamir’s secret sharing protocol [S2] a dealer shares a secret σ ∈ Zq among the
parties P1, . . . , Pn in the following way. The dealer chooses at random a polynomial
f (z) over Zq of degree t , such that f (0) = σ . He then secretly transmits to each party
Pi a share si = f (i) mod q . It is clear that t or less parties have no information about
the secret while t + 1 can easily reconstruct it by polynomial interpolation.

It is well known however that in the presence of a malicious adversary, Shamir’s secret
sharing protocol could fail. Indeed, it is possible for a dealer to share values which do not
lie on a polynomial of degree t . Also dishonest parties may contribute incorrect shares at
reconstruction time. Verifiable secret sharing (VSS) protocols [CGMA], described next,
are intended to prevent this possibility.

Feldman’s VSS

Feldman’s VSS protocol [Fel] extends Shamir’s secret sharing method in a way that
allows the recipients of shares to verify that the shares they receive from the dealer
are consistent (i.e., that any subset of t + 1 shares determines the same unique secret),
and to filter out the incorrect shares submitted by the dishonest parties at reconstruction
time. The protocol can tolerate up to n/2 malicious faults including the dealer. In the
following we denote it with the name Feldman-VSS. Like in Shamir’s scheme, the dealer
generates a random t-degree polynomial f (z) =∑k ak zk over Zq , such that f (0) = σ ,
and transmits to each party Pi a share si = f (i). The dealer also broadcasts verification
values Ak = gak mod p for k = 0, . . . , t . This will allow the parties to check that the
values si really define a secret by checking that

gsi =
t∏

k=0

(Ak)
i k

mod p. (1)

If a party Pi holds a share that does not satisfy (1) then he broadcasts a complaint against
the dealer. The dealer reveals the share si matching (1) for each complaining party Pi . If
any of the revealed shares fails this equation, the dealer is disqualified. This guarantees
that either the dealer is disqualified or the honest parties hold at least t + 1 shares si

matching (1). At reconstruction time, the same equation is used to detect any incorrect

58 R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin

shares submitted by the dishonest parties so that the remaining shares can be interpolated
to reconstruct the shared secret σ .

Notice that the value of the secret is only computationally secure, e.g., the value
A0 = ga0 = gσ mod p is leaked. However, it can be shown that an adversary that learns
t or less shares cannot obtain any information on σ beyond what can be derived from gσ .
The proof of this fact uses a simulation argument which we sketch here. Given any t (or
less) shares (known to the adversary) and gσ = A0, one can generate the distribution of
the other public information in the protocol, i.e., values A1, . . . , At , as follows. Assume
the known shares are s1, . . . , st . Thus we know g f (i) = gsi , i = 1, . . . , t , as well
as g f (0) = gσ . This allows us to compute Ak for k = 1, . . . , t using the equation
Ak = gak =∏t

i=0(g
f (i))λki where λki are coefficients such that ak =

∑t
i=0 λki f (i).3

Pedersen’s VSS

Differently from Feldman-VSS, Pedersen-VSS provides perfect (information-theoretic)
secrecy of the shared secret, namely, the view of the adversary is independent from
the secret being shared. However, it assumes that the adversary (specifically the dealer)
cannot solve the discrete-log problem. Indeed, a cheating dealer with such an ability
could either successfully finish the sharing phase without a secret being properly shared
and/or can prevent the subsequent reconstruction of the secret.

The scheme uses parameters p, q, and g as introduced before and an additional element
h in the subgroup of Z∗p generated by g. It is assumed that the adversary cannot compute
logg h.

The dealer generates two random t-degree polynomials f (z), f ′(z) over Zq , such that
f (0) = σ , the secret being shared. He transmits to each party Pi his share (si , s ′i) where
si = f (i) and s ′i = f ′(i). The dealer also broadcasts values Ck = gak hbk mod p for
k = 0, . . . , t , where f (z) =∑k ak zk and f ′(z) =∑k bk zk . This will allow the parties
to check that the values si , s ′i really define a secret by checking that

gsi hs ′i =
t∏

k=0

(Ck)
i k

mod p. (2)

If a party Pi holds a share that does not satisfy (2) then he complains against the dealer.
The dealer reveals the share (si , s ′i) matching (2) for each complaining party Pi . If any
of the revealed shares fails this equation, the dealer is disqualified.

Some of the main properties of Pedersen-VSS are summarized in the next lemma and
used in the analysis of our DKG solution in the next subsection.

Lemma 1 [P2]. Under the Discrete-Log Assumption, Pedersen-VSS satisfies the fol-
lowing properties in the presence of a polynomially bounded adversary that corrupts at
most t parties:

1. If the dealer is not disqualified during the protocol then all honest parties hold
shares that interpolate to a unique polynomial of degree t . In particular, any t + 1
of these shares suffice to reconstruct (via interpolation) the secret s efficiently.

3 If [f (0), . . . , f (t)]T = A · [a0, . . . , at]T, where A is a (t+1) by (t+1)matrix with i k in row i = 0, . . . , t
and column k = 0, . . . , t , then [a0, . . . , at]T = A−1 · [f (0), . . . , f (t)]T and λki ’s are entries of A−1.

Secure Distributed Key Generation 59

2. The protocol produces information (the public values Ck and private values s ′i)
that can be used at reconstruction time to test for the correctness of each share;
thus, reconstruction is possible, even in the presence of malicious parties, from any
subset of shares containing at least t + 1 correct shares.

3. The view of the adversary is independent of the value of the secret s, and therefore
the secrecy of s is unconditional.

3. The Insecurity of Pedersen’s DKG Protocol

We recall that a DKG protocol is run by the parties on an empty input and it should
produce as a public output, a random value y uniformly distributed in G. Each party Pi

should also hold as a private output a value xi which is a share of a t-out-of-n sharing of
x , the discrete log in base g of y. We give a formal definition of DKG security in Section
4, but for now the above informal DKG requirements will suffice to show the problem
with previous DKG proposals.

Based on Feldman’s VSS protocol, Pedersen [P1] proposed the first DKG protocol. It
requires the execution of n parallel invocations of Feldman-VSS as follows. Each party
Pi selects a random secret zi ∈ Zq and shares it among the n parties using Feldman-VSS.
This defines the set QUAL of parties that shared their secrets properly. The random secret
x is set to be the sum of the properly shared secrets and each party can compute his share
of x by locally summing up the shares he received. The value y can be computed as
the product of the public values yi = gzi mod p generated by the proper executions
of the Feldman-VSS protocols. Similarly, the verification values A1, . . . , At necessary
for robust reconstruction of x in Feldman-VSS, can be computed as products of the
corresponding verification values generated by each properly executed VSS protocol.

In Fig. 1 we present a simplified version of the protocol proposed in [P1], which we
call JF-DKG (for “Joint Feldman DKG”). By concentrating on the core of the protocol we
are able to emphasize the central weakness in its design. We then show how this crucial
flaw applies also to several variants of this core protocol (including the full protocol from
[P1] and other modifications [HJKY], [HJJ+]).

An Attack Against JF-DKG

The JF-DKG protocol enables an adversary to influence the distribution of the result to
a non-uniform distribution. It can be seen, from the above description of the protocol
(Fig. 1), that the determining factor for what the value x will be, is the definition of the
set QUAL. The attack utilizes the fact that the decision whether a party is in QUAL or
not, even given the fully synchronous communication model, occurs after the adversary
has seen the values yi of all parties. The values yi are made public in Step 1 and the
disqualification of parties occurs in Step 3. Using this timing discrepancy, the attacker
can affect the distribution of the pair (x, y).

More specifically the attack works as follows. Assume the adversary wants to bias
the distribution towards keys y whose last bit is 0. He corrupts two parties, say P1 and
P2. In Step 1, P1, as a dealer, follows the protocol. At the end of Step 1 the adversary
computes α = ∏n

i=1 yi and β = ∏n
i=2 yi . If α ends with 0 then the adversary will do

nothing, and P1 will not be disqualified. Otherwise, α ends with 1, the adversary forces
the disqualification of P1. This is achieved by having P2 complain against P1 in Step 2,

60 R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin

Protocol JF-DKG

1. Each party Pi (as a dealer) chooses a random polynomial fi (z) over Zq of degree t :

fi (z) = ai0 + ai1z + · · · + ait z
t .

Pi broadcasts Aik = gaik mod p for k = 0, . . . , t . Denote ai0 by zi and Ai0 by yi . Each
Pi computes the shares si j = fi (j) mod q for j = 1, . . . , n and sends si j secretly to
party Pj .

2. Each Pj verifies the shares he received from the other parties by checking for i =
1, . . . , n:

gsi j =
t∏

k=0

(Aik)
j k

mod p. (3)

If the check fails for an index i , Pj broadcasts a complaint against Pi .
3. Party Pi (as a dealer) reveals the share si j matching (3) for each complaining party Pj . If

any of the revealed shares fails this equation, Pi is disqualified. We define the set QUAL
to be the set of non-disqualified parties.

4. The public value y is computed as y =
∏

i∈QUAL yi mod p. The public verification

values are computed as Ak =
∏

i∈QUAL Aik mod p for k = 1, . . . , t . Each party Pj sets

his share of the secret as xj =
∑

i∈QUAL si j mod q. The secret shared value x itself is

not computed by any party, but it is equal to x =
∑

i∈QUAL zi mod q.

Fig. 1. Pedersen’s solution for distributed generation of secret keys.

and P1 broadcasting an inconsistent share. This action sets the public value y to β which
ends with 0 with probability 1/2. Thus effectively the attacker has forced strings ending
in 0 to appear with probability 3/4 rather than 1/2.

Note: It is worth remarking that the above adversarial actions are possible even if
we limit the attacker to work on a fully synchronized communication model where all
messages corresponding to a given communication round are generated and delivered
from and to all parties simultaneously. In particular, the added power to the adversary
provided by our partially synchronous model (see Section 2.1) is not necessary for these
attacks to succeed.

Why the Simulation Fails

An attempt to prove this protocol secure would use a simulation argument. Following is
an explanation of why such a simulator would fail. Consider a simulatorS which receives
the value y and needs to “hit” this value. That is, S needs to generate a transcript which is
indistinguishable from an actual run of the protocol that outputs y as the public key, and
where the adversary controls up to t parties, say P1, . . . , Pt . The simulator has enough
information to compute the values z1, . . . , zt that the adversary has shared in Step 1.
Now S needs to commit itself to the values shared by the good parties. However, the
attack described in the paragraph above can be easily extended to a strategy that allows
the adversary to decide in Steps 2–3 on the set Q of faulty parties whose values will be
considered in the final computation (i.e., QUAL = Q∪{t+1, . . . , n}). Consequently, in
Step 1, the simulator S does not know how to pick the good parties’ values yt+1, . . . , yn

so that (
∏

i∈Q yi) · (yt+1 · · · · · yn) = y mod p, as S still does not know the set Q. Since
the number of possible sets Q that the adversary can choose is exponential in t , then S
has no effective strategy to simulate this computation in polynomial time.

Secure Distributed Key Generation 61

Other Insecure Variants of the JF-DKG Protocol

The many variants and extensions of the JF-DKG protocol which have appeared in the
literature are also insecure. They suffer from the same drawback of JF-DKG discussed
above. The variants include: signatures on shares, commitments to yi , committing en-
cryption on broadcast channel, committing encryption with reconstruction, and “stop,
kill, and rewind.” A discussion of these variants and their flaws is given in the Appendix.

What Can We Prove about JF-DKG?

The results in this section show that JF-DKG cannot be used as a generic secure DKG
protocol, in particular one in which the generated key is to be chosen with uniform
distribution. Yet, one can wonder whether there are applications of DKG for which the
security requirements can be relaxed to allow the use of the JF-DKG protocol in a secure
way. Interestingly, we show this to be the case for some natural uses of DKG. Specifically,
we show in Section 5 how to apply JF-DKG in order to achieve a provably secure threshold
Schnorr signature scheme. As we will see, for the security of this application the full
strength of DKG is not required but only that the attacker cannot compute the discrete
logarithm of the resultant (public) key y, a property that we show to hold for JF-DKG.

4. The New DKG Protocol

As shown in the previous section, the JF-DKG protocol cannot be considered a secure
DKG protocol in general since it cannot guarantee that the output y from the protocol (as
well as the virtually shared secret x) be distributed according to the uniform distribution
as required by dlog-based cryptosystems. Moreover, beyond this generic weakness of
the protocol, there are specific applications of DKG where the lack of the uniformity
guarantee spoils the security of the scheme or, at least, invalidates the known proofs of
security. To illustrate the latter point, we examine the use of the DKG protocol in the
context of the threshold DSS signature scheme described in [GJKR1]. Here DKG is used
for the generation of the (shared) private signature key x and the corresponding public
key y = gx , as well as for the generation of pairs (k, r = gk) which are part of the
computation of each individual signature.

The proof of security of the threshold scheme [GJKR1] is carried by reducing its
security to the security of the regular (centralized) DSS scheme.4 Namely, given an
attacker against the threshold signatures one constructs an attacker against the centralized
scheme. Note that for this strategy to succeed one needs to be able to create a virtual
(simulated) threshold scenario in which the generated public key value y is the same as
the given public key y from the centralized scheme. However, if one uses the JF-DKG
protocol in the implementation of the threshold scheme this “hitting” of a specific y
cannot succeed: this is something our attacker against JF-DKG from Section 3 can always
prevent. A similar problem arises in showing how to transform successful forgeries in the

4 We stress that this is the best possible security guarantee in this case since centralized DSS signatures
are secure by “self-assumption” rather than by reduction to an established hard problem such as computing
discrete logarithms.

62 R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin

threshold case into forgeries against the centralized scheme. In this case it is the values of
r = gk provided by the signatures in the centralized scheme that need to be “hit” in the
threshold simulation. Yet, once again, the attacker against JF-DKG can always succeed
in spoiling such a simulation.

Note that the above is not a cryptanalytical argument showing the insecurity of
threshold DSS when implemented with JF-DKG but rather a strong argument against
the viability of known proof techniques to succeed in proving the security of such
schemes. In other words, either threshold DSS with JF-DKG is truly insecure, or new
proof techniques will be required to prove the contrary. Fortunately, as we show next
provably secure threshold DSS schemes (as well as others) can be implemented by using
our New-DKG protocol. On the other hand, we show in Section 5 that in some applications
the security requirements from the DKG protocol can be relaxed enough to allow for the
secure use of JF-DKG.

4.1. Requirements for a Secure DKG Protocol

In order to be able to provide a rigorous proof of security for our proposed DKG protocol
we first develop a formal definition of security for such protocols. As we mentioned
in the Introduction, distributed generation of keys in a dlog-based scheme amounts to
generating a secret sharing of a random, uniformly distributed value x ∈ Zq and making
public the value y = gx mod p (where p, q, g are as defined above). Specifically, in
a dlog-based scheme the distributed protocol DKG performed by n parties P1, . . . , Pn

generates private outputs x1, . . . , xn , called the shares, and a public output y. The protocol
is called t-secure (or secure with threshold t) if in the presence of an attacker that corrupts
at most t parties the following requirements for correctness and secrecy are satisfied:

Correctness.

(C1) All subsets of t + 1 shares provided by honest parties define the same unique
secret key x .

(C2) All honest parties have the same value of public key y = gx mod p, where x is
the unique secret guaranteed by (C1).

(C3) x is uniformly distributed in Zq (and hence y is uniformly distributed in the
subgroup generated by g).

Secrecy. No information on x can be learned by the adversary except for what is
implied by the value y = gx mod p.

More formally, we state this condition in terms of simulatability: for every (probabilis-
tic polynomial-time) adversaryA that corrupts up to t parties, there exists a (probabilistic
polynomial-time) simulator S, such that on input an element y in the subgroup of Z∗p
generated by g, produces an output distribution which is polynomially indistinguishable
from A’s view of a run of the DKG protocol that ends with y as its public key output.

The above is a minimal set of requirements needed in all known applications of such
a protocol. In many applications a stronger version of (C1) is desirable, which reflects
two additional aspects: (1) It requires the existence of an efficient procedure to build
the secret x out of t + 1 shares; and (2) it requires this procedure to be robust, i.e.,

Secure Distributed Key Generation 63

the reconstruction of x should be possible also in the presence of malicious parties that
try to foil the computation. We note that these added properties are useful not only in
applications that require explicit reconstruction of the secret, but also in applications
(such as threshold cryptosystems) that use the secret x in a distributed manner (without
ever reconstructing it) to compute some cryptographic function, e.g., a signature. Thus,
we formulate (C1′) as follows:

(C1′) There is an efficient procedure that on input the n shares submitted by the parties
and the public information produced by the DKG protocol, outputs the unique
value x , even if up to t shares are submitted by faulty parties.

Remark. The above conditions (C1), (C2), and (C1′) can of course be relaxed to allow
for a negligible (in the security parameter) probability of error. Similarly condition (C2)
can be relaxed to allow a distribution for x which has negligible statistical distance from
the uniform distribution. In the following when we say that a DKG protocol is secure we
mean that it satisfies these relaxed versions of the above conditions.

4.2. The New Scheme

Our solution enjoys the same flavor and simplicity as the JF-DKG protocol presented
in Fig. 1, i.e., each party shares a random value and the random secret is generated by
summing up these values. However, we use a different sharing for the random values zi ,
one that is information-theoretically secure, so that no information is revealed about the
zi ’s. This will prevent the adversary from modifying the set of qualified parties based
on the values of the zi ’s. We then need a method to extract the public key y from these
sharings.

In more detail, we start by running a commitment stage where each party Pi com-
mits to a t-degree polynomial fi (z) whose constant coefficient is the random value, zi ,
contributed by Pi to the jointly generated secret x . We require the following properties
from this commitment stage: First, the attacker cannot force a commitment by a (cor-
rupted) party Pj to depend on the commitment(s) of any set of honest parties. Second,
for any party Pi that is not disqualified during this stage, there is a unique polynomial
fi committed to by Pi and this polynomial is recoverable by the honest parties (this
may be needed if party Pi misbehaves at a later stage of the protocol). Finally, for each
honest party Pi and non-disqualified party Pj , Pi holds the value fi (j) at the end of the
commitment stage.

To realize the above commitment stage we use the information-theoretic VSS protocol
due to Pedersen [P2] and which we denote by Pedersen-VSS (see Section 2.2). We show
that at the end of the commitment stage the value of the secret x is determined and no later
misbehavior by any party can change it (indeed, if a non-disqualified party misbehaves
later in the protocol his value zi is publicly reconstructed by the honest parties). Most
importantly, this guarantees that no bias in the output x or y of the protocol is possible,
and it allows us to present a full proof of security based on a careful simulation argument.

After the value x is fixed we enable the parties to compute gx mod p efficiently and
securely. This is done by having party Pi run a Feldman-VSS with the same polynomial
fi (z) he committed to before. Thus, Pi does not distribute shares in this step, but only
publishes the public verification values of Feldman-VSS which are validated by party

64 R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin

Pj using the point fi (j) he received before. Feldman-VSS reveals gzi and by the fact
that we are using the same polynomial it assures us that it is the zi committed to by Pi

at the beginning (this way the adversary cannot change his contribution at this point).
Notice that if a party Pi misbehaves at this point (for example by refusing to carry
on the Feldman-VSS or carrying it out incorrectly), the honest parties can recover the
polynomial fi . This way, Pi ’s contribution to the secret key x will still be included (if
we did not include it, we would allow the adversary to bias the distribution of x).

4.3. Secure DKG Protocol

Our secure solution to the distributed generation of keys follows the above ideas and is
presented in detail in Fig. 2. We denote this protocol as New-DKG. The security properties
of this solution are stated in the next theorem.

Theorem 1. Under the Discrete-Log Assumption, Protocol New-DKG from Fig. 2 is a
secure protocol for distributed key generation in dlog-based cryptosystems, namely, it
satisfies the correctness and secrecy requirements of Section 4.1 with threshold t , for
any t < n/2.

Proof of Correctness. We first note that all honest parties in the protocol compute the
same set QUAL since the determination of which parties are to be disqualified depends
on public broadcast information which is known to all (honest) parties.

(C1) At the end of Step 2 of the protocol it holds that if i ∈ QUAL then party
Pi has successfully performed the dealing of zi under Pedersen-VSS. From part 1 of
Lemma 1 we know that all honest parties hold shares (si j) which interpolate to a unique
polynomial with constant coefficient equal to zi . Thus, for any setRof t+1 correct shares,
zi =

∑
j∈R γj · si j mod q where γj are appropriate Lagrange interpolation coefficients

for the setR. Since each honest party Pj computes its share xj of x as xj =
∑

i∈QUAL si j ,
then we have that for the set of sharesR,

x =
∑

i∈QUAL

zi =
∑

i∈QUAL

(∑
j∈R

γj · si j

)
=
∑
j∈R

γj ·
(∑

i∈QUAL

si j

)
=
∑
j∈R

γj xj .

Since this holds for any set of t + 1 correct shares then x is uniquely defined.
(C1′) The above argument in (C1) shows that the secret x can be efficiently recon-

structed, via interpolation, out of any t + 1 correct shares. We need to show that we can
tell apart correct shares from incorrect ones. For this we show that for each share xj , the
value gxj can be computed from publicly available information broadcast in Step 4(a):

gxj = g
∑

i∈QUAL si j =
∏

i∈QUAL

gsi j =
∏

i∈QUAL

t∏
k=0

(Aik)
j k

mod p,

where the last equality follows from (5). Thus the publicly available value gxj makes it
possible to verify the correctness of share xj at reconstruction time.

Secure Distributed Key Generation 65

Protocol New-DKG

Generating x:

1. Each party Pi performs a Pedersen-VSS of a random value zi as a dealer:
(a) Pi chooses two random polynomials fi (z), f ′i (z) over Zq of degree t :

fi (z) = ai0 + ai1z + · · · + ait z
t , f ′i (z) = bi0 + bi1z + · · · + bit z

t .

Let zi = ai0 = fi (0). Pi broadcasts Cik = gaik hbik mod p for k = 0, . . . , t . Pi

computes the shares si j = fi (j), s′i j = f ′i (j) mod q for j = 1, . . . , n and sends

si j , s′i j to party Pj .
(b) Each party Pj verifies the shares he received from the other parties. For each i =

1, . . . , n, Pj checks if

gsi j h
s′
i j =

t∏
k=0

(Cik)
j k

mod p. (4)

If the check fails for an index i , Pj broadcasts a complaint against Pi .
(c) Each party Pi who, as a dealer, received a complaint from party Pj broadcasts the

values si j , s′i j that satisfy (4).
(d) Each party marks as disqualified any party that either

• received more than t complaints in Step 1(b), or
• answered a complaint in Step 1(c) with values that falsify (4).

2. Each party then builds the set of non-disqualified parties QUAL. (We show in the analysis
that all honest parties build the same set QUAL and hence, for simplicity, we denote it
with a unique global name.)

3. The distributed secret value x is not explicitly computed by any party, but it equals x =∑
i∈QUAL zi mod q. Each party Pi sets his share of the secret as xi =

∑
j∈QUAL sji mod

q and the value x ′i =
∑

j∈QUAL s′j i mod q.

Extracting y = gx mod p:

4. Each party i ∈ QUAL exposes yi = gzi mod p via Feldman-VSS:
(a) Each party Pi , i ∈ QUAL, broadcasts Aik = gaik mod p for k = 0, . . . , t .
(b) Each party Pj verifies the values broadcast by the other parties in QUAL, namely,

for each i ∈ QUAL, Pj checks if

gsi j =
t∏

k=0

(Aik)
j k

mod p. (5)

If the check fails for an index i , Pj complains against Pi by broadcasting the values
si j , s′i j that satisfy (4) but do not satisfy (5).

(c) For parties Pi who receive at least one valid complaint, i.e., values which satisfy
(4) and not (5), the other parties run the reconstruction phase of Pedersen-VSS to
compute zi , fi (z), Aik for k = 0, . . . , t in the clear. For all parties in QUAL, set
yi = Ai0 = gzi mod p. Compute y =∏

i∈QUAL yi mod p.

Fig. 2. Secure distributed key generation in dlog-based systems.

(C2) The value y is computed (by the honest parties) as y =∏i∈QUAL yi mod p, where
the values of yi are derived from information broadcast in the protocol and thus known
to all honest parties. We need to show that indeed y = gx where x = ∑i∈QUAL zi . We
will show that for i ∈ QUAL, yi = gzi , and then y = ∏

i∈QUAL yi =
∏

i∈QUAL gzi =
g�i∈QUALzi = gx . For parties i ∈ QUAL against whom a valid complaint has been issued
in Step 4(b), value zi is publicly reconstructed and yi set to gzi mod p (the correct

66 R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin

reconstruction of zi is guaranteed by Lemma 1 (part 2)). Now we need to show that for
Pi , i ∈ QUAL, against whom a valid complaint has not been issued, the value yi is set
to Ai0. Values Aik , k = 0, . . . , t , broadcast by party Pi in Step 4(a) define a t-degree
polynomial f̂i (z) in Zq . Since we assume that no valid complaint was issued against Pi

then (5) is satisfied for all honest parties, and thus f̂i (z) and fi (z) have at least t + 1
points in common, given by the shares si j held by the uncorrupted parties Pj . Hence they
are equal, and in particular Ai0 = g fi (0) = gzi .

(C3) The secret x is defined as x =∑i∈QUAL zi . Note that as long as there is one value
zi in this sum that is chosen at random and independently from other values in the sum,
we are guaranteed to have uniform distribution of x . Also note that the secret x and the
components zi in the sum are already determined at the end of Step 2 of New-DKG (since
neither the values zi nor the set QUAL change later). Let Pi be a non-corrupted party; in
particular, i ∈ QUAL. At the end of Step 1 of the protocol zi exists only as a value dealt
by Pi using Pedersen-VSS. By virtue of part 3 of Lemma 1 the view (and thus actions)
of the adversary are independent of this value zi and hence the secret x is uniformly
distributed (as zi is).

Proof of Secrecy. We provide a simulator S for the New-DKG protocol in Fig. 3. In
the description and analysis of the simulator we assume, without loss of generality, that
the adversary compromises parties P1, . . . , Pt ′ , where t ′ ≤ t . We denote the indices of
the parties controlled by the adversary by B = {1, . . . , t ′}, and the indices of the parties
controlled by the simulator by G = {t ′ + 1, . . . , n}.

An informal description of the simulator is as follows. S will run on behalf of the
good parties, the first part of the protocol (Steps 1–3) following exactly the instructions.
For n − t ′ − 1 of the good parties he will also follow Step 4. However, for one of the
good parties (say Pn) he will have to change the broadcasted value to “hit” the desired
public key y. At this point S knows all the values Ai0 for i ∈ QUAL, since if Pi is good
he chose Ai0, otherwise he knows enough points on the polynomials shared by the bad
party. Thus he will choose An0 so that

∏
i∈QU AL Ai0 = y. Now he has to choose the

other values Ank’s so that the shares held by the bad parties will match them. He can do
this via a simple interpolation in the exponent. Again details are in Fig. 3.

We now proceed to show that the view of the adversary A that interacts with S on
input y is the same as the view ofA that interacts with the honest parties in a regular run
of the protocol that outputs the given y as the public key.

In a regular run of protocol New-DKG, A sees the following probability distribution
of data produced by the uncorrupted parties:

• Values fi (j), f ′i (j), i ∈ G, j ∈ B, uniformly chosen in Zq (and denoted as si j , s ′i j ,
resp.).
• Values Cik, Aik, i ∈ G, k = 0, . . . , t, that correspond to (exponents of) coeffi-

cients of randomly chosen polynomials and for which (4) and (5) are satisfied for
all j ∈ B.

Since here we are interested in runs of New-DKG that end with the value y as the public
key output of the protocol, we note that the above distribution of values is induced by the
choice (of the good parties) of polynomials fi (z), f ′i (z), i ∈ G, uniformly distributed in

Secure Distributed Key Generation 67

Algorithm of Simulator S

We denote by B the set of parties controlled by the adversary, and by G the set of honest parties
(run by the simulator). Without loss of generality, B = {1, . . . , t ′} and G = {t ′ + 1, . . . , n},
t ′ ≤ t .

Input: public key y

1. Perform Steps 1–3 on behalf of the uncorrupted parties Pt ′+1, . . . , Pn exactly as in pro-
tocol New-DKG. This includes receiving and processing the information sent privately
and publicly from corrupted parties to honest ones. At the end of Step 2 the following
hold:
• The set QUAL is well-defined. Note thatG ⊆ QUAL and that polynomials fi (z), f ′i (z)

for i ∈ G are chosen at random.
• The adversary’s view consists of polynomials fi (z), f ′i (z) for i ∈ B, the shares
(si j , s′i j) = (fi (j), f ′i (j)) for i ∈ QUAL, j ∈ B, and all the public values Cik for
i ∈ QUAL, k = 0, . . . , t .

• S knows all polynomials fi (z), f ′i (z) for i ∈ QUAL (note that for i ∈ QUAL ∩ B
the honest parties, and hence S, receive enough consistent shares from the adversary
that allow S to compute all these parties’ polynomials). In particular, S knows all the
shares si j , s′i j , the coefficients aik , bik , and the public values Cik .

2. Perform the following computations:
– Compute Aik = gaik for i ∈ QUAL\{n}, k = 0, . . . , t .
– Set A∗n0 = y ·∏i∈(QUAL\{n})(Ai0)

−1 mod p.

– Assign s∗nj = snj = fn(j) for j = 1, . . . , t .

– Compute A∗nk = (A∗n0)
λk0 ·

∏t
i=1(g

s∗
ni)λki for k = 1, . . . , t , where λki ’s are the

Lagrange interpolation coefficients.

(a) Broadcast Aik for i ∈ G\{n}, and A∗nk for k = 0, . . . , t .
(b) Perform for each uncorrupted party the verifications of (5) on the values Aik , i ∈ B,

broadcast by the parties controlled by the adversary. If the verification fails for some
i ∈ B, j ∈ G, broadcast a complaint (si j , s′i j). (Notice that the corrupted parties can
publish a valid complaint only against one another.)

(c) Perform Step 4(c) of the protocol on behalf of the uncorrupted parties, i.e., perform
reconstruction phase of Pedersen-VSS to compute zi and yi in the clear for every
Pi against whom a valid accusation was broadcast in the previous step.

Fig. 3. Simulator for the shared key generation protocol New-DKG.

the family of t-degree polynomials over Zq subject to the condition that∏
i∈QUAL

Ai0 = y mod p. (6)

In other words, this distribution is characterized by the choice of polynomials fi (z),
f ′i (z) for i ∈ (G\{n}) and f ′n(z) as random independent t-degree polynomials over Zq ,
and of fn(z) as a uniformly chosen polynomial from the family of t-degree polynomials
over Zq that satisfy the constraint fn(0) = logg(y) −

∑
i∈(QUAL\{n}) fi (0) mod q. (This

last constraint is necessary and sufficient to guarantee (6).) Note that, using the notation
of values computed by S in Step 2 of the simulation, the last constraint can be denoted
as fn(0) = logg(A

∗
n0).

We show that the simulator S outputs a probability distribution which is identical to
the above distribution. First note that the above distribution depends on the set QUAL
defined at the end of Step 2 of the protocol. Since all the simulator’s actions in Step

68 R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin

1 of the simulator are identical to the actions of honest parties interacting with A in
a real run of the protocol, we are assured that the set QUAL is defined at the end of
this simulation step identically to its value in the real protocol. We now describe the
output distribution of S in terms of t-degree polynomials f ∗i and f ′∗i corresponding
to the choices of the simulator when simulating the actions of the honest parties and
defined as follows: For i ∈ G\{n}, set f ∗i to fi and f ′∗i to f ′i . For i = n, define f ∗n via
the values5 f ∗n (0) = logg(A

∗
n0) and f ∗n (j) = s∗nj = fn(j), j = 1, . . . , t . Finally, the

polynomial f ′∗n is defined via the relation f ∗n (z)+ d · f ′∗n (z) = fn(z)+ d · f ′n(z) mod q,
where d = logg(h). It can be seen by this definition that the values of these polynomials
evaluated at the points j ∈ B coincide with the values fi (j), f ′i (j)which are seen by the
corrupted parties in Step 1 of the protocol. Also, the coefficients of these polynomials
agree with the exponentials Cik published by the simulated honest parties in Step 1 of
the protocol (i.e., Cik = ga∗ik hb∗ik where a∗ik and b∗ik are the coefficients of polynomials
f ∗i (z), f ′∗i (z), respectively, for i ∈ G), as well as with the exponentials Aik , i ∈ G\{n},
and A∗nk published by the simulator in Step 2(a) on behalf of the honest parties (i.e.,
Aik = ga∗ik , i ∈ G\{n}, and A∗nk = ga∗nk , k = 0, . . . , t) corresponding to the parties’
values in Step 4(a) of the protocol. Thus, these values pass the verifications of (4) and
(5) as in the real protocol.

It remains to be shown that polynomials f ∗i and f ′∗i belong to the right distribution.
Indeed, for i ∈ G\{n} this is immediate since they are defined identically to fi and
f ′i which are chosen according to the uniform distribution. For f ∗n we see that this
polynomial evaluates in points j = 1, . . . , t to random values (snj) while at 0 it evaluates
logg(A

∗
n0) as required to satisfy (6). Finally, polynomial f ′∗n is defined (see above) as

f ′∗n (z) = d−1 · (fn(z)− f ∗n (z))+ f ′n(z) and since f ′n(z) is chosen in Step 1 as a random
and independent polynomial then so is f ′∗n (z).

4.4. Remarks

Efficiency. We point out that our secure New-DKG protocol does not lose much in
efficiency with respect to the previously known insecure JF-DKG protocol. Instead of
Feldman-VSS, each party performs Pedersen-VSS (Steps 1–3), which takes the same
number of rounds and demands at most twice more local computation. The extraction of
the public key in Step 4 adds only two rounds (one if no party is dishonest) to the whole
protocol. We point out that all the long modular exponentiations needed during this
extraction have already been computed during the Pedersen-VSS phase, thus Step 4 is
basically “for free” from a computational point of view. (See Section 6 for a discussion
of performance versus security trade-offs between JF-DKG and New-DKG relevant to
applications for which JF-DKG is sufficiently secure.)

Generation of h. We notice that our New-DKG protocol requires the public value h in
order to run Pedersen’s VSS. The crucial property for h is that the adversary should not
know logg h. One possibility is to assume that a random h is made public as part of the

5 Note that in this description we use discrete-log values unknown to the simulator; this provides a mathe-
matical description of the output distribution of S useful for our analysis but does not require or assume that
S can compute these values.

Secure Distributed Key Generation 69

public parameters of the scheme (i.e., together with p, q, g). However, this requires a
trusted process to do this. Another alternative is to have h generated jointly by the parties
in a preliminary phase of the protocol. For this task we can use the protocol JF-DKG.
Indeed, as we prove in Lemma 2 below (Section 5), if h is the output of a run of JF-DKG
the adversary will not be able to compute logg h. Notice that there is no requirement for
h to be chosen with uniform probability from the group generated by g, but only that
logg h be infeasible to compute.

Extension to adaptive adversaries. Canetti et al. [CGJ+] showed a modification of
our New-DKG protocol which is secure against an adaptive adversary. In this model the
attacker can make its decision of what parties to corrupt at any point during the run of
the protocol (while in our static model the corrupted parties are fixed in advance before
the protocol starts).

We do not know if our protocol is secure or not against an adaptive adversary. We
do not know of any attack against our protocol in this model, yet no proof of security
seems to go through. The reason is that when the simulator adjusts the value An0 to
hit the value y, it only knows t points on the polynomial defined by the Ank’s which
it interpolated in the exponent. This means that there are n − t “inconsistent parties,”
i.e., parties that if corrupted will not be able to present an internal state consistent with
the public information (indeed, their internal state should include their share of the
polynomial). In the presence of an adaptive adversary these parties could be corrupted
at any time and make the simulation fail. Being so many (more than half) even if the
simulator chooses them at random, the adversary will have a substantial probability of
choosing one. Against a static adversary we did not have this problem, since we knew
which parties were corrupted and we could make sure that the inconsistent parties were
all honest ones.

The only modification to our protocol introduced in [CGJ+] is in the y-extracting
step (Step 4), where they replace our method of publishing yi = Ai0 = gzi values via
Feldman-VSS with the following: Each party broadcasts a pair (Ai0, Bi0) = (gai0 , hbi0)

such that Ai0 ·Bi0 = Ci0 mod p, and proves in zero-knowledge that he knows the discrete
logs logg(Ai0) and logh(Bi0). Proving this ensures that yi = gzi . If a party fails the proof
then his shared value zi is reconstructed via the Pedersen-VSS reconstruction, as in our
New-DKG protocol. Notice that we need not reveal the values Aik for k > 0.

This modification turns out to suffice to make the protocol secure against an adap-
tive adversary because it allows the construction of a simulator that, at any point in the
simulation, has at most a single “inconsistent party.” Namely, there is at most one party
that if corrupted will make the simulation fail, while all other corruptions can be han-
dled successfully by the simulator. The way the simulator proceeds is by choosing this
“inconsistent party” at random and hoping the attacker will not corrupt him. If it does,
the simulation rewinds to a previous state, a new choice of inconsistent party is made,
and the simulation continues. It is shown in [CGJ+] that this brings the successful end
of the simulation in expected polynomial-time.

The protocol in [CGJ+] requires the honest parties to erase data used during the
computation and no longer needed. It also does not guarantee security in a setting in
which several copies of the protocol can be executed concurrently. These two concerns
were later addressed in [JL].

70 R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin

5. Secure Applications of JF-DKG: Threshold Schnorr Signatures

In Section 3 we showed that JF-DKG does not constitute a secure DKG protocol by
building an attacker that could successfully bias the distribution of the generated value y
away from the uniform distribution. This weakness of JF-DKG invalidates the use of this
protocol as a generic (secure) DKG protocol. A natural question that arises is whether
weaker security properties of the protocol suffice for its use in specific applications
(namely, applications that impose more relaxed requirements on DKG security). Here
we provide a positive answer to this question by showing that (i) JF-DKG enjoys the
property that no adversary A can force an output y from the protocol for which A can
compute the discrete logarithm of y; and (ii) this property suffices for building secure
threshold Schnorr signature schemes (as well as threshold variants of other cryptosystems
which enjoy a proof of security solely based on the hardness of the discrete-logarithm
problem).

5.1. JF-DKG Produces Hard Instances of the Discrete-Log Problem

For showing that an attacker against JF-DKG cannot succeed in biasing the output y
from the protocol into values for which it knows the discrete logarithm x , we use the
following observation. Recall that the public key y produced by an execution of JF-DKG
is a product of two values: yG chosen with uniform distribution by the good parties,
and yB = gxB where xB is the contribution of the bad parties into the computation. The
important fact to note is that this contribution xB can be efficiently reconstructed by the
good parties by interpolating the (t + 1 or more) good shares that they possess. This
allows us to transform efficiently an attacker that is able to learn the discrete logarithm
of the generated y into an attacker that breaks the Discrete-Log Assumption. The rest of
this subsection is devoted to the formalization and proof of this claim.

If A is an adversary during an execution of JF-DKG, we denote by (y, view(A)) ←
JF-DKG(p, q, g) the event that JF-DKG outputs y as the public key and A gets the view
view(A) (with public inputs p, q, g). The following lemma states that if, according to
Assumption 1, Discrete-Log is hard, then it is infeasible to compute the discrete-log of
the output of JF-DKG.

Lemma 2. Let A be a polynomial-time adversary that breaks into at most t servers
during an execution of JF-DKG. Let A′ be a polynomial-time machine that runs on the
view ofA after the execution of JF-DKG. Under the Discrete-Log Assumption (Assump-
tion 1), we have that for every A, A′, every polynomial P(·), and sufficiently large
k, Pr(A′(p, q, g, y, view(A)) = x) ≤ 1/P(k), where (p, q) ∈R PRIMES(k), g is an
element of order q in Z∗p, and (y = gx , view(A))← JF-DKG(p, q, g).

Proof. We prove this lemma, by reduction to the Discrete-Log Assumption. That is,
we assume that we have a pair A, A′ that contradicts the conclusion of the lemma, and
we show how to use them to solve a target instance p, q, g, yT = gxT of the discrete-log
problem.

We set up a simulation of the execution of JF-DKG forA. The simulator runs on input
p, q, g, yT = gxT and will set up a virtual network of n parties for A.

Secure Distributed Key Generation 71

Let B be the set of parties corrupted by the adversary A. Let G denote the set of
remaining good parties which will be run by the simulator. Without loss of generality,
we assume that Pn ∈ G.

A regular instance of JF-DKG is started, with the following difference. The simulator
will run the correct instructions of JF-DKG for all the parties in G\{n}. For party Pn

instead it will run a simulation of the Feldman-VSS protocol which results in yT being
Pn’s contribution to JF-DKG.

More specifically for party Pn the simulator does the following. It chooses t values
snj ∈R Zq , for j ∈ B. Then Pn sends to Pj ∈ B the value snj . Notice that there exists a
unique polynomial fn(z) of degree t such that fn(0) = xT and fn(j) = snj , j ∈ B. Let

fn(z) = an0 + an1z + · · · + ant z
t .

Although we cannot compute the values ani ’s, we know that they are a linear combination
of xT and the snj ’s, i.e.,

ani = λn0xT +
t∑

j=1

λnj snj

for the appropriate Lagrange coefficients λnj . Thus we can compute

Ani = gani = (yT)
λn0

t∏
j=1

gλnj snj .

Party Pn broadcasts the values An0, . . . , Ant .
The protocol now proceeds regularly. Notice that Pn has enough information to han-

dle correctly any complaint that is brought up against him (since only bad parties can
complain against Pn and the simulator knows the points fn(j) held by those parties).

Let y be the output of the protocol. We can write y = yT · yG · yB where yG is the
contribution of the parties in G\{n}, and yB is the contribution of the parties in the set
B ∩ QUAL (i.e., the parties controlled by the adversary that are not disqualified).

Notice that if we write yG = gxG and yB = gxB , the simulator knows both xG and
xB . Indeed, the simulator chose xG on behalf of the good parties. On the other hand,
the contribution of each party in B that has not been disqualified is the free term of a
polynomial of degree t , and the simulator holds at least t + 1 points on this polynomial;
thus the simulator can compute each of these contributions and, in particular, the value xB .

We now run A′ on (y, view(A)) and denote by x its output. The simulator outputs
xT = x − xG − xB , which is the correct discrete-log of yT whenever x is the correct
discrete-log of y. So if A′ guesses right with non-negligible probability, so does the
simulator.

We end the proof by showing that the simulated view of A is identically distributed
as in a real execution (this is to guarantee that A′ guesses with the same probability
as in a real execution of A). This indeed is easy to see since the actions of parties
Pt+1, . . . , Pn−1 are exactly the same as in a real execution. With regard to party Pn the
adversary sees t shares snj which are uniformly distributed, and the values Ani = gani .
The t-degree polynomial determined by the values ani is random, conditioned on the
fact that fn(j) = snj . Therefore, the probability distributions of these values is the same
in the real and simulated executions.

72 R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin

Remark. A consequence of the above lemma is the following. Even if the adversary can
somewhat bias the distribution of the result y of JF-DKG, he cannot bias it too much. In
particular, the adversary cannot make y fall into a pre-specified small (polynomial-sized)
subset Y ⊂ G. We prove this formally in the following corollary.

Corollary 1. Let (p, q) ∈R PRIMES(k), let g be an element of order q in Z∗p, and let
Y ⊂ G = (g) such that |Y | ≤ Q(k) for some polynomial Q(·). Let A be a polynomial-
time adversary that breaks into at most t servers during an execution of JF-DKG and is
given Y as input. Under the Discrete-Log Assumption (Assumption 1), we have that for
every A, every polynomial P(·), and sufficiently large k, Pr(y ← JF-DKG(p, q, g), y ∈
Y) ≤ 1/P(k).

Proof. The public key y produced by JF-DKG is a product of yG chosen with uniform
distribution by the good parties, and of value yB = gxB , where xB is the contribution of
the bad parties into the computation. Notice that this contribution xB can be reconstructed
by the good parties via interpolation.

Assume, for the sake of contradiction, that there exists an adversaryA and a polynomial
P(·) such that Pr(y ← JF-DKG(p, q, g), y ∈ Y) > 1/P(k). We now show how to use
A to solve an instance of the discrete-log problem

We are given a target value yT ∈R G and we want to compute xT ∈ Zq such that
yT = gxT . We choose y′ ∈ Y uniformly at random and run a simulation of JF-DKG
where the contribution of the good parties is yG = y′y−1

T . Since yT is random in G, so is
yG . Moreover, by the same argument that one uses to argue secrecy of the Feldman-VSS
protocol, the simulator can perfectly simulate the adversary’s view of the contribution
of the good parties to any value yG which is uniformly distributed in G.

By assumption, the adversary with probability > 1/P(k), creates xB such that y =
yG gxB ∈ Y . Since we chose y′ uniformly at random in Y , with probability 1/|Y | ≥
1/Q(k) we have that y = y′. If this event happens then xB = logg(yT), and hence
the simulator would solve the discrete-log problem on a random instance yT with non-
negligible probability > 1/P(k)Q(k).

In the next section we see how the above corollary enables the simulation of certain
threshold signature schemes that use the JF-DKG protocol as a subroutine.

5.2. Threshold Schnorr Signature Scheme Using JF-DKG

Here we show that the limited security guarantee proven for JF-DKG in Lemma 2 is
sufficient to build a threshold Schnorr signature scheme that uses JF-DKG and for which
security can be proven solely based on the Discrete-Log Assumption.

Schnorr’s Signature Scheme

We first recall Schnorr’s signature scheme [S1]. Let H be a hash function, H : {0, 1}∗ →
Zq , which we model as an ideal random function. The private key is x , chosen at random
in Zq , and the public key is y = gx mod p. A signature on message m is computed as
follows. The signer picks a one-time secret k at random in Zq , and computes the signature

Secure Distributed Key Generation 73

on m as a pair (c, s) where r = gk mod p, c = H(m, r), and s = k + cx mod q.
Signature (c, s) can be publicly verified by computing r = gs y−c mod p and then
checking if c = H(m, r).

This signature scheme follows a methodology introduced by Fiat and Shamir [FS],
which converts any three-round commit–challenge–response zero-knowledge identifi-
cation scheme where the challenge is a public coin into a signature scheme. This is done
by replacing the random challenge chosen by the verifier with an output of a random
function H computed on the message and the prover’s commitment. In this case the
prover’s commitment is r = gk , the challenge is c = H(m, r), and the prover’s response
is s = k + cx . In the random oracle model the unforgeability of this scheme under a
chosen-message attack [GMR] reduces to the discrete-log assumption, as proven by [PS].

We recall this proof here because it helps in understanding the proof of security of
the threshold Schnorr signature scheme below. The simulator, on input y, can produce
Schnorr’s signatures on any m by picking s and c at random in Zq , computing r = gs y−c,
and setting H(m, r) = c. This simulator can also translate the adversary’s forgery into
computing logg y as follows. It runs the adversary until a forgery (c, s) on some message
m is generated. Now, since H is a random function, then, except for negligible probability,
the adversary must invoke H on the point (m, r)where r = gs y−c, or otherwise it could
not have guessed the value of c = H(m, r). The simulator then rewinds the adversary,
runs it again by giving the same answers to queries to H until the query (m, r), which
it now answers with new randomness c′. If the adversary forges a signature on m in
this run, then, except for negligible probability, it produces s ′ such that r = gs ′ y−c′ , and
hence the simulator can now compute logg y = (s−s ′)/(c′−c). One can show that if the
adversary’s probability of forgery is ε, this simulation succeeds with probability ε2/4qH .
(This probability is the result of multiplying the probability O(ε) that the adversary forges
in the first run, times the probability O(ε/qH) that it forges on the second run and that it
chooses to forge on the same (m, r) query out of its qH queries to H). We refer to [PS]
for the full proof.

Threshold Version of Schnorr’s Scheme Using Pedersen’s DKG

The threshold version of Schnorr’s scheme using JF-DKG is a very simple protocol. It
works in the straightforward way as all standard threshold dlog-based protocols, e.g.,
[GJKR1], except that secret reconstruction is done on additive rather than polynomial
shares.6

To initialize the threshold signature scheme, first the JF-DKG protocol is executed for
distributed key generation, i.e., it outputs secret-sharing of a private key x and a public
value, the public key y = gx . Notice that at this point each player Pi in the set QUAL
(the set of players who performed good sharings) holds an additive share zi of x—refer
to Fig. 2).

The threshold Schnorr signature protocol TSch then proceeds as follows, on input a
message m (see Fig. 4): We limit the generation of the signature to the parties in QUAL:

6 Replacing computation on polynomial shares with computation on additive shares often seems necessary
for the proof of security of a threshold protocol to go through. This technique was used before to handle an
adaptive adversary in [FMY], [CGJ+] or to handle the no-erasure and concurrent adversary in [JL].

74 R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin

Threshold Signature Protocol TSch

Inputs: Message m to be signed, plus the secret-sharing of x generated by the initial JF-DKG
protocol. In particular, each party Pi ∈ QUAL holds an additive share zi of x while values
y = gx and yi = gzi for every Pi are public. Each value zi is itself secret-shared with
Feldman-VSS.

Outputs: Schnorr’s signature (c, s) on m.
1. Parties perform an instance of the JF-DKG protocol (Fig. 1). Denote the outputs

of this run of JF-DKG as follows. Each party Pi ∈ QUAL′ holds an additive share
ui of the secret-shared secret k. Each of these additive shares is itself secret-shared
with Feldman-VSS. We denote the generated public values r = gk and ri = gui

for each Pi .
2. Each party locally computes the challenge c = H(m, r).
3. Parties perform the reconstruction phase of Feldman’s secret-sharing of value s =

k + cx as follows. Each party Pi ∈ QUAL ∩ QUAL′ broadcasts its additive share
si = ui + czi . Each share is verified by checking if gsi = ri yc

i . Otherwise xi and zi

are reconstructed and si is computed publicly.
Values zi for each party in QUAL − QUAL′ are publicly reconstructed and for

those parties si is set to czi

The protocol outputs signature (c, s) where s =∑i∈QUAL si .

Fig. 4. Threshold signature protocol for Schnorr’s signature scheme.

they run an instance of the JF-DKG protocol to generate a secret-sharing of the one time
secret k and the public value r = gk ; let QUAL′ be the set of parties who performed good
sharing in this step. Again each party in QUAL′ holds an additive share, say ui , of k.

Each party then locally computes the challenge c = H(m, r), and each party Pi ∈
QUAL ∩ QUAL′ broadcasts its additive share si = ui + czi . Notice that these values
can be publicly verified by checking if gsi = Ki0(Xi0)

c, where Xi0 = yi = gzi and
Ki0 = ri = gui are verification values broadcast by party Pi , during the initial key-
generation JF-DKG protocol, and during the JF-DKG protocol that generates r and the
sharing of k, respectively. If verification fails for some Pi , the parties reconstruct the
Feldman secret-sharing of both xi and ki and compute si publicly. The values zi of the
players in QUAL but not in QUAL′ are publicly reconstructed (these are bad players) and
for those parties si is set to czi . Finally, s is computed as s =∑i∈QUAL si . Therefore the
secret s can be efficiently reconstructed as in the Feldman-VSS protocol.

Efficiency Considerations

Note that without faults, the above protocol requires only one round of broadcast during
the JF-DKG protocol of Step 1. Recall that broadcast is the most important factor in the
delay incurred by threshold protocols in the Internet setting. This is true if the verifier
requesting the signature communicates directly with every party Pi . When Pi receives
and validates a message m to be signed, it triggers the JF-DKG protocol of Step 1
and broadcasts along it the message m. This allows the parties to detect if the verifier
submitted inconsistent requests to them. If no faults occur, there is only one more round of
broadcast, in Step 3 of TSch, but this can be avoided if every party Pi sends to the verifier
the value c and its share si . The verifier can check if signature (c, s) = (c, s1+ · · ·+ sn)

is valid, and the protocol falls back to the robust reconstruction only if the signature

Secure Distributed Key Generation 75

does not verify. Note also that Step 1 of the protocol can be performed off-line, and thus
with preprocessing the threshold Schnorr signature is non-interactive as long as no faults
occur.

Security of Threshold Signature Scheme (JF-DKG, TSch)

The robustness of the (JF-DKG, TSch) threshold signature scheme follows straightfor-
wardly from the robustness of the JF-DKG protocol. The interesting part is the proof of
unforgeability.

Theorem 2. Under the discrete-log assumption, the threshold signature scheme
(JF-DKG, TSch) is unforgeable in the random oracle model, assuming a static adversary
with t < n/2.

Before presenting a formal proof of Theorem 2 it is illustrative to discuss the main
ideas behind this proof and show why the most “natural” approach to the proof does
not work. If we consider the proof of security for centralized Schnorr’s signatures as
sketched above, we can see that the simulator first chooses s, c at random, and computes
r = gs y−c; the pair (r, s) becomes a good signature on m, once the simulator “patches”
the random oracle with the value H(m, r) = c. In order to translate this idea to the
threshold scenario, we see that the simulator must simulate an execution of JF-DKG
which must “hit” the computed r as its output. However, as demonstrated in Section 3,
it is not possible to simulate JF-DKG in this way. That is because the adversary can bias
the distribution of the output and make sure that it will never hit r .

So we need to use a different strategy. The simulator runs on input a target value yT

and it wants to compute xT = logg yT . The simulator embeds this target value in the
public key generated by a simulation of JF-DKG as the contribution of one of the good
parties (say Pn’s contribution yn = yT , exactly as in the proof of Lemma 2). Then to
simulate a signature protocol on message m, the simulator chooses sn, c at random and
sets rn = gsn y−c

n . Now the simulator must make sure that whatever value r is computed,
the random oracle can be set as H(m, r) = c. Indeed, if that happens, the simulator can
just run the protocol TSch on behalf of the rest of the good parties and the signature will
work out.

At this point of the simulation there is a (polynomially small) set of pairs (m, r̃) on
which H has been queried. Because of the “weak” secrecy property of JF-DKG (see
Corollary 1 after the proof of Lemma 2), we know that the adversary has negligible
probability of hitting those. However, the adversary could hit a pair (m, r̃) asked during
the computation of Step 1, but before Step 1 is completed. To cover these possibilities
we let the simulator flip a bit b. If b = 0, it runs TSch normally for the remaining
good parties; the simulation succeeds if, for the resulting value r , the pair (m, r) has
not been asked yet. Otherwise, if b = 1, the simulator sets to c one of those queries
(m, r̃) asked during the computation of Step 1 (a randomly chosen one). In this case the
simulation succeeds if the resulting r equals r̃ . Either way the simulation succeeds with
a non-negligible probability.

We proceed with the full proof of Theorem 2.

76 R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin

Proof. Assume that there exists an adversary which breaks the unforgeability property
of this signature scheme. We construct a simulator S which, using this adversary, will
compute a discrete logarithm on input a random challenge value yT in G. In the course
of this simulation, S answers the adversary’s queries to oracle H at random, except in a
crucial case specified below. Let B be the set of corrupted parties and let G be the set of
good parties. Assume without loss of generality that Pn ∈ G. Let qH , qS be upper bounds
on the number of H queries and the number of the signature queries, respectively, that
the adversary makes.

To compute the discrete logarithm of a target value yT , the simulator S embeds it in
the value yn contributed by party Pn to the public key generated in the initial JF-DKG
protocol. In other words, the simulator follows the JF-DKG protocol on behalf of parties
Pi ∈ G\{n} as prescribed, but for party Pn the simulator simulates the adversarial view
of the Feldman-VSS protocol performed as a part of JF-DKG by party Pn so that public
value yn broadcast by Pn is equal to the target value yT .

After simulating the initial key generation protocol in this way, the simulator S, for
every message m submitted by the adversary for a signature, simulates an execution of
TSch on this message as follows. S chooses values c and sn at random in Zq , computes
rn = gsn y−c

n , and in Step 1 of TSch it follows the protocol on behalf of parties Pi ∈ G\{n}
as prescribed, but for Pn it again simulates the Feldman-VSS protocol in this step so that
the value rn broadcast by that party is what the simulator wants, i.e., rn = gsn y−c

n .
The simulator’s goal is to make sure that whatever value r is computed in this step,

the output of the H oracle on input (m, r) can be set to c. In that case the simulator can
simulate the rest of the TSch protocol. The value H(m, r) will be computed as c in Step
2, and in Step 3 the simulator can follow the protocol on behalf of parties Pi ∈ G\{n}
as prescribed, while for Pn it can publish the previously chosen value sn . Notice that
since gsn = rn yc

n , this value is accepted. Moreover, this yields a valid signature because
gs = g�si =∏(gsi) =∏(ri yc

i) = (
∏

ri)(
∏

yi)
c = r yc, and c = H(m, r).

To set H(m, r) = c, where r is computed in Step 1 of TSch, the simulatorS flips a coin
b, before sending any Step 1 simulation messages to the adversary. If b = 0, then during
the simulation of Step 1, S answers with random values all the (new) queries to H made
by the adversary. If the value r computed in Step 1 is such that H was already asked on
(m, r), the simulator fails. Otherwise, S sets H(m, r) as c and succeeds. If b = 1, then
the simulator chooses at random an index � ∈ {1, . . . , qH } and if the adversary makes
any (m, r (j)) queries to H after the simulator publishes all values ri for Pi ∈ G but
before the adversary has finished sharing his values ui for Pi ∈ B (these are substeps of
the simulation of Step 1), the simulator answers the �th query to H with c. If the value r
output in this Step 1 is equal to r (i), then this counts as the simulator’s success because
H(m, r) = c. Otherwise the simulator fails.

We now estimate the simulator’s probability of success. We use the intuition outlined
in Section 3 in the discussion of security of the JF-DKG protocol. Let εbef (resp. εdur)
be the probability with which the adversary, after seeing rG =

∏
i∈G ri , chooses his

contribution rB so that it “hits” some value r = rGrB on which oracle H has been
queried before the beginning of (resp. during) the simulation of Step 1. Notice that by
Corollary 1, εbef must be negligible.

If b = 0 the probability of success of the simulation is clearly (1− εbef)(1− εdur), i.e.,
the probability that (m, r) was not queried before or during the simulation of Step 1. On

Secure Distributed Key Generation 77

the other hand, if b = 1 the success probability is at least εdur/qH , i.e., the probability
that (m, r)was asked during the simulation of Step 1, times the probability that we guess
in which query it was asked.

Hence, the overall success probability is at least

1
2 (1− εbef − εdur + εbefεdur)+ εdur

2qH
≥ 1

2
− εbef

2
− εdur

2

(
1− 1

qH

)
.

The above is minimized for εdur = 1 and thus the probability of success of the simulation
is larger than εss = 1/2qH −εbef/2, which is negligibly close to 1/(2qH) by Corollary 1.

Therefore, ifS repeats this simulation γ /εss times, the probability that it fails is at most
e−γ . In this way, with probability (1− e−γ)qS , the simulator successfully goes through
the simulation of each of the qS instances of the TSch protocol. Setting γ = ln 2qS , this
probability is more than a half.

Since the adversary’s view in this simulation is the same as in the protocol execution,
then assuming that the adversary forges with non-negligible probability ε, the simulator
will get some forged signature (c, s) on some message m with probability at least ε/2
(the factor of 1/2 comes from the above analysis).

By applying the same “forking lemma” argument as Pointcheval and Stern [PS] used
to prove the security of the standard Schnorr signature (see the beginning of Section
5.2), we can argue the following. With probability at least ε/2, the simulator S gets one
forgery and if he re-winds the adversary to the point when the adversary asks query
H(m, r) for r = gs y−c, and then continues to simulate from that point on with fresh
randomness (in particular answering this query to H with fresh randomness c′), then
S has about a (ε/2)/qH chance of getting a second forgery on the same message m
but relative to a different random function H . In this case S gets two pairs (c, s) and
(c′, s ′) such that r = gs y−c = gs ′ y−c′ and thus can compute logg y and from it also
logg yn = logg yT because S knows all xi = logg yi for Pi �= Pn .

Therefore, if the assumed threshold signature forger runs in time T and succeeds
in forgery with probability ε, then if probability εbef is small, S computes the discrete
logarithm in time 2c/εss ∗ T = 2 ln(2qS)/εss ∗ T with probability at least
about ε2/(4qH).

To exemplify the kind of security degradation created by the above reduction, consider
the case in which T is big enough so that ε ≈ 1. Then the simulator’s computation
is longer than the adversary’s computation by the factor α = 4qH ∗ 2 ln 2qS/εss . If
εbef < 1/(4qH), then εss = 1/(2qH) − εhit > 1/(4qH), and hence α < 25q2

H ln(2qS).
Taking qS < 232, we get α < 211q2

H as the security degradation factor.

6. Security versus Efficiency Implications

The results presented above show that for certain threshold cryptosystems, like the
threshold Schnorr signature protocol, we can use either JF-DKG or New-DKG and still
obtain a secure protocol.

However, if we use New-DKG this will require one extra round of broadcast commu-
nication. Keeping communication to a minimum is especially important for a scheme

78 R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin

like Schnorr’s, whose main cost lies in the DKG subprotocol that it uses. Thus it would
seem that JF-DKG is the better implementation choice for threshold Schnorr’s signatures
(resulting in the protocol TSch).

However, the security reduction we are able to show for the TSch threshold Schnorr
signature scheme (which uses JF-DKG) has a q2

H factor of security degradation compared
with the security of the discrete-log problem (DLP). This represents an additional qH

degradation factor over the provable security of the centralized version of Schnorr sig-
natures, for which Pointcheval and Stern [PS] show a reduction from DLP with a single
qH factor in security degradation. On the other hand, if we implement threshold Schnorr
signatures using New-DKG (we denote this threshold Schnorr scheme by new-TSch) there
is no loss of security between the threshold and centralized scheme and therefore the
total security degradation relative to DLP is only qH .

The degradation in the provable security can be interpreted in two ways. One can
ignore it and take the mere existence of a polynomial reduction from some scheme to the
DLP as a good coin, and claim that since the two problems are shown to be polynomially
related, one can securely implement the scheme in question over a field in which DLP is
believed to be hard. This is, however, only a heuristic argument. Formally, existence of
a security reduction from some scheme to DLP with a degradation factor f implies that
if one takes b as a target security bound, i.e., if one wants to claim that the constructed
scheme is secure against an adversary performing about b operations, then one needs
to use a group in which DLP is believed to be hard against an adversary performing
about b · f operations. Therefore, the less efficient reduction for the TSch scheme means
that the TSch scheme should be implemented over a larger field to guarantee the same
security bound b. In fact, the increase in computation resulting from the fact that the
TSch scheme needs to work over a larger field to guarantee the same security as the
new-TSch scheme outweighs the benefits resulting from the fact that the TSch scheme
requires only one round of broadcast while new-TSch needs two.

More specifically, if we take b = 280 as the target security bound, and assume that
qH ≈ 280 as well, then the [PS] results imply that Schnorr’s signatures can be securely run
in a group with at least 280 ·280 = 2160 DLP security. Because the security reduction from
the new-TSch scheme to the Schnorr signatures is tight, this implies that the new-TSch
scheme is secure in the same 2160-DLP group. On the other hand, the security reduction
of Theorem 2 implies that the TSch scheme is secure in a group with 280 · 2160 = 2240

security of the DLP. In other words, the new-TSch threshold Schnorr scheme requires
a factor of α = 160/80 = 2 growth in the DLP security parameter, while the TSch
threshold Schnorr scheme requires a factor of α = 240/80 = 3 growth in the DLP
security parameter.

Recall that the cost of exponentiation modulo p with a |q|-bit exponent grows like
O(|q| · |p|1.6). If we consider the DLP security in the classic Z∗p setting, the factor α
growth in the security parameter implies factor α3 growth in the size of modulus p and
factor α growth in the size of the modulus q. Therefore the overall cost of exponentiation
grows like α · (α3)1.6 = α5.8. For elliptic curves, the sizes of both p and q grow by factor
α, and hence the overall cost of exponentiation grows only by factor α2.6.

As a reference point for the speed of cryptographic operations we take the performance
table of [W], where on a Celeron 850 MHz an exponentiation in Z∗p with |p| = 1024
and |q| = 160 takes 2 ms and an exponentiation over a 168-bit elliptic curve takes 5
ms. We assume, after Lenstra and Verheul [LV], that in both settings DLP has security

Secure Distributed Key Generation 79

parameter 80 (i.e., the DLP in such groups is secure against an adversary with a b = 280

computational upper bound). If n is the number of parties and t ≈ 0.5 · n, then in the
TSch threshold Schnorr protocol, each party makes 1.5 · n long exponentiations, while
in new-TSch each party performs 2.5 · n long exponentiations.

Taking it all together, for a threshold system with n = 7 parties in Z∗p, each party’s
computation in the TSch protocol with 280 security guarantees would take about 11 ·
35.8 · 2 ms = 12.8 s, while in new-TSch each party’s computation takes only about
18 · 25.8 · 2 ms = 2 s. In this setting the new-TSch scheme is a winner, because, taking
the SINTRA implementation of reliable broadcast [CP] as a reference point, a round
of reliable broadcast between about seven parties would take about 1 s on the Internet
and only about 100 ms on LAN, and therefore the computation cost incurred by TSch
outweighs the communication delay caused by an extra round of broadcast incurred by
new-TSch.

The TSch scheme may be slightly faster than new-TSch in the elliptic curve setting
with parties distributed over the Internet, but probably not when the parties are on a
LAN network. Each party’s computation is 18 · 22.6 · 5 ms = 0.5 s for new-TSch, and
11 · 32.6 · 5 ms = 0.95 s for TSch. Therefore, if the parties are distributed over the
Internet where one round of broadcasts causes a delay of about 1 s, the 0.45 s difference
in computation is outweighed by the broadcast cost, and therefore the TSch scheme is
preferable. On the other hand, the new-TSch scheme still wins with TSch if the parties
are connected via a LAN, where the extra round of broadcast costs only about 0.1 s.

Finally, if one takes our reduction as a heuristic argument that the TSch threshold
Schnorr signature scheme with security parameter 80 can be achieved in fields where
DLP also has security parameter 80, then the TSch scheme would win over new-TSch:
The computation time per party in TSch would be only about 11·5 ms = 55 ms compared
with 18 ·5 ms = 90 ms for new-TSch. Moreover the TSch scheme, having only one round
of broadcast would incur a communication delay of about 100 ms in the LAN setting or
1 s in the Internet setting, while the new-TSch scheme would take, respectively, 200 ms
and 2 s.

Acknowledgments

We thank Don Beaver for motivational discussions on this problem.

Appendix. Other Insecure Variants of the JF-DKG Protocol

We describe several variants and extensions of the JF-DKG protocol which have ap-
peared in the literature: signatures on shares, commitments to yi , committing encryption
on broadcast channel, committing encryption with reconstruction, and “stop, kill, and
rewind.” We show that all of them fail to achieve the correctness property (C3) and the
secrecy (or simulatability) requirement as presented in Section 4.1.

Signatures in Share Distribution

In the original protocol proposed in [P1] each party (acting as dealer) signs the shares
he distributes in Step 1. This was supposed to aid the honest parties in disqualifying

80 R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin

dishonest dealers, because a party which receives an incorrect share (i.e., not satisfying
(3)) could prove that the dealer is dishonest by broadcasting this share with the dealer’s
signature. Indeed, the original protocol from [P1] uses this simplified procedure in Step
3 for disqualifying dishonest dealers: a party is disqualified if one valid complaint (i.e.,
incorrect share with valid signature) is broadcast against him.

We note first that with this modification even a single execution of Feldman’s protocol
fails to be a VSS. Indeed, if a dealer gives neither a correct share nor a signature to some
party, the party cannot prove the dealer wrong by the above method.

Thus the joint execution of n such protocols may fail to produce a correct sharing at
all. Also notice that the basic idea of the attack in Section 3 still works (P1 can give to
P2 two signed shares, a correct one, and an incorrect one and all other parties consistent
shares with valid signatures, and then (using only P2) decide if he wants to be disqualified
or not).

Initial Commitment Stage

Another difference between the original protocol presented in [P1] and JF-DKG of Fig. 1
is the use of an initial commitment stage in [P1], so that the modified protocol looks as
follows:

1. Each Pi chooses zi ∈ Zq uniformly at random, computes yi = gzi mod p,
chooses a random string ri , and broadcasts a commitment Ci = C(yi , ri) to all
members.

2. Each Pi opens the commitment Ci by broadcasting proper yi and ri . A party
who fails to do so is disqualified.

3–6. These steps follow Steps 1–4 of the JF-DKG protocol, with the exception that the
parties disqualified in Step 2 above are barred from participation and the fi (z)
polynomials picked in Step 3 (Step 1 in JF-DKG) have only ai1, . . . , aik satisfy
fi (0) = zi .

This initial commitment stage is supposed to force the parties to choose their random
secrets zi independently from one another in order to ensure the uniform distribution
of the final sum x , but it fails to do that. Indeed, the attack in Section 3 is not based
on how dishonest parties choose their contribution, but rather on their ability to pull
such contribution out of the lot after seeing the honest parties’ contributions. Thus the
dishonest parties can follow the protocol, including the extra commitment stages, and
still nothing stops them from carrying out the attack described in Section 3. If Pi decides
to do so, he can get his value disqualified and the remaining parties will not add yi to the
public key y even if it matches the initial commitment Ci .

Committing Encryption on a Broadcast Channel

The attack described in Section 3 seems to rely on the assumption that each pair of parties
is connected by a private channel which allows P1 and P2 to “lie” to the other parties
about the share P1 sent to P2. This is possible in several implementations of private
channels, for example physically untappable ones (e.g., lead pipes) or private channels
built out of one-time pad encryption.

Secure Distributed Key Generation 81

It would seem that using some form of encryption to implement private channels may
help in thwarting the attack, since a complaining party may be required to “open” the
encrypted message he received to prove that the incorrect share really came from the
dealer. This strategy was followed in a modification of JF-DKG used for proactive secret
sharing [HJKY], [HJJ+]). However, we prove now that this is not the case. The attack
can still be carried out even if parties exchange messages using encryption.

Let us assume that the parties communicate simply via the the broadcast channels.
Private communication is achieved via a public key “committing” encryption scheme,
i.e., an encryption scheme that not only ensures the confidentiality of a message but also
commits the sender to the message being sent.7 In other words, to send a message m
secretly to recipient R, the sender picks a random vector r and broadcasts a ciphertext
E = ENCr

R(m). We assume that the recipient using the secret key of ENCR can recover
both m and r , and so he is able to prove that E = ENCr

R(m) to all other parties by
revealing m, r .8

The JF-DKG variant using such committing encryption introduces the following mod-
ifications to the protocol of Fig. 1: Parties send the shares si j in Step 1 by broadcasting
their committing encryptions Ei j = ENC

ri j

Pj
(si j). Then in Step 2 a valid complaint has

to consist of a pair (si j , ri j) such that si j is an incorrect share and Ei j = ENC
ri j

Pj
(si j). In

Step 3 we disqualify a party if there is a single valid complaint against him.
Unfortunately, the protocol modified in such a way is still insecure. P1 sends to P2

a bad share s∗12 via the committing encryption in Step 2. At the same time however it
chooses the sharing polynomial so that the correct share s12 is some fixed value on which
P1 and P2 agreed earlier (or in other words think of P1 and P2 as the same entity, the
adversary). If the adversary wants P1’s contribution to be “in”, P2 will not complain in
Step 3, but will use s12 in all further computation. If the adversary wants P1 disqualified,
P2 broadcasts (s∗12, ri j).

Committing Encryption with Reconstruction

In the JF-DKG with the committing encryption variant described above, we are following
the policy of disqualifying a party Pi as soon as a single valid complaint is filed. Yet,
it seems that as the values Aik , 0 ≤ k ≤ t , are broadcast by party Pi in Step 1 of
JF-DKG and there is a fixed polynomial and a fixed secret, if we have enough shares to
reconstruct it we would not need to disqualify the dealer based on a single complaint.
We could follow this alternative policy instead: if a valid complaint is filed against Pi , all
other parties open the encrypted shares Pi sent them: if more than t + 1 of them match
(3) then publicly reconstruct zi , otherwise disqualify Pi .

However, even for this policy we show a strategy for the adversary to decide if (say)
P1 is disqualified or not, at a stage where he can influence the distributions. Assume
n = 2t + 1, P1 sends correct encrypted shares to all the parties (honest and dishonest)

7 Contrast this to deniable encryption [CDNO] where the sender or the receiver may lie about the content
of encrypted messages.

8 Not all encryption schemes allow the receiver to recover both the message m and the random vector r .
However what we are arguing here is that even if the committing encryption provided the random vector
recovery, this JF-DKG variant still cannot be made secure.

82 R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin

except for one honest party. This party will complain and everybody is required to open
their encrypted shares. The honest parties have only t matching shares, thus an additional
one is required in order to incorporate P1’s value into the computation. Thus, the decision
of whether the secret will be considered is again left in the hands of the adversary.

We can also show that variations on this policy do not work.

“Stop, Kill, and Rewind” Procedure

Notice that in some of the above attacks against JF-DKG and its variants, the adversarial
strategy involves a behavior on the part of some of the parties which can be publicly
identified as faulty. We could modify the JF-DKG protocol so that whenever some party
is clearly faulty, the protocol stops, that party is excluded from the set of parties, and the
protocol is started from scratch in the smaller group of parties. Note that this can happen
at most t times.

However, the adversary can still skew the distribution of the outputs. He just follows
the same strategy as in Section 3. The event that the protocol is repeated is conditioned on
the fact that the adversary made a dishonest party visibly faulty. Thus the distribution of
the final output is not necessarily uniform, even if the second repetition has a uniformly
distributed output.

For the example in Section 3, the final output y ends with 0 if either

• α ended with 0 and P1 was not disqualified (probability 1/2).
• P1 was disqualified (i.e., α ended with 1, which happens with probability 1/2) and

the output of the second run ends with 0 (probability 1/2).

Thus the probability that in the presence of such an adversary the protocol outputs a
value y which ends with 0 remains 1/2+ 1/2 ∗ 1/2 = 3/4.

The “stop, kill, and rewind” procedure can be employed in other variants of JF-DKG.
For example, it was used in [HJKY], [HJJ+] in the committing encryption variant. In
each case a similar argument shows that the adversary can force the distribution of the
resulting y not to be uniform.

References

[CDNO] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In Crypto ’97, pages 90–104.
LNCS No. 1294. Springer-Verlag, Berlin, 1997.

[CGH] R. Canetti, O. Goldreich and S. Halevi. The random oracle methodology, revisited. Proc. STOC,
pages 209–218, 1998.

[CGJ+] R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Adaptive security for threshold
cryptosystems. In Crypto ’99, pages 98–115. LNCS No. 1666. Springer-Verlag, Berlin, 1999.

[CGMA] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and achieving si-
multaneity in the presence of faults. In Proc. 26th FOCS, pages 383–395. IEEE, Piscataway, NJ,
1985.

[CGS] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient multi-authority
election scheme. In Eurocrypt ’97, pages 103–118. LNCS No. 1233. Springer-Verlag, Berlin, 1997.

[CMI] M. Cerecedo, T. Matsumoto, and H. Imai. Efficient and secure multiparty generation of digital
signatures based on discrete logarithms. IEICE Trans. Fundamentals, E76-A(4):532–545, 1993.

[CP] C. Cachin and J. A. Poritz. Secure intrusion-tolerant replication on the Internet. In Proc. Internat.
Conf. on Dependable Systems and Networks (DSN-2002), pages 167–176, Washington, DC. IEEE,
Piscataway, NJ, 2002. (See also http://eprint.iacr.org/.)

Secure Distributed Key Generation 83

[DF] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In Crypto ’89, pages 307–315. LNCS No. 435.
Springer-Verlag, Berlin, 1989.

[ElG] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Trans. Inform. Theory, IT31:469–472, 1985.

[Fel] P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In Proc. 28th FOCS,
pages 427–437. IEEE, Piscataway, NJ, 1987.

[FGMY] Y. Frankel, P. Gemmell, P. Mackenzie, and M. Yung. Optimal resilience proactive public-key cryp-
tosystems. In Proc. 38th FOCS, pages 384–393. IEEE, Piscataway, NJ, 1997.

[FMY] Y. Frankel, P. D. MacKenzie, and M. Yung. Adaptively-secure distributed public key systems. In
Algorithms – ESA ’99, 7th Annual European Symposium, Prague, pages 4–27. LNCS No. 1643.
Springer-Verlag, Berlin, 1999.

[FS] A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification and signature
problems. In Crypto’86, pages 186–194. LNCS No. 263. Springer-Verlag, Berlin, 1986.

[GJKR1] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS signatures. Inform.
Comput., 164:54–84, 2001.

[GJKR2] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. The (in)security of distributed key generation
in dlog-based cryptosystems. In Eurocrypt ’99, pages 295–310. LNCS No. 1592. Springer-Verlag,
Berlin, 1999.

[GJKR3] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Revisiting the distributed key generation for
discrete-log based cryptosystems. In RSA-CT ’03, pages 373–390. LNCS No. 2612. Springer-Verlag,
Berlin, 2003.

[GMR] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive chosen-
message attacks. SIAM J. Comput., 17(2):281–308, April 1988.

[Har] L. Harn. Group oriented (t, n) digital signature scheme. IEE Proc. Comput. Digit. Tech., 141(5):307–
313, Sept. 1994.

[HJJ+] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive public key and
signature systems. In Proc. 1997 ACM Conf. on Computers and Communication Security, pages
100–110, 1997.

[HJKY] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing, or: How to cope with
perpetual leakage. In Crypto ’95, pages 339–352. LNCS No. 963. Springer-Verlag, Berlin, 1995.

[JL] S. Jarecki and A. Lysyanskaya. Adaptively secure threshold cryptosystems without erasures. In
Eurocrypt ’00, pages 221–242. LNCS No. 1807. Springer-Verlag, Berlin, 2000.

[Lan] S. Langford. Weaknesses in some threshold cryptosystems. In Crypto ’96, pages 74–82. LNCS
No. 1109. Springer-Verlag, Berlin, 1996.

[LHL] C.-H. Li, T. Hwang, and N.-Y. Lee. (t, n) Threshold signature schemes based on discrete logarithm.
In Eurocrypt ’94, pages 191–200. LNCS No. 950. Springer-Verlag, Berlin, 1994.

[LV] A. K. Lenstra and E. R. Verheul Selecting cryptographic key sizes. In J. Cryptology, 14(4):255–293,
2001.

[OY] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In PODC ’91, pages 51–59.
ACM Press, New York, 1992.

[P1] T. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Crypto
’91, pages 129–140. LNCS No. 576. Springer-Verlag, Berlin, 1991.

[P2] T. Pedersen. A threshold cryptosystem without a trusted party. In Eurocrypt ’91, pages 522–526.
LNCS No. 547. Springer-Verlag, Berlin, 1991.

[PK] C. Park and K. Kurosawa. New ElGamal type threshold digital signature scheme. IEICE Trans.
Fundamentals, E79-A(1):86–93, January 1996.

[PS] D. Pointcheval, and J. Stern, Security proofs for signature schemes. In Eurocrypt ’96, pages 387–398.
LNCS No. 1070. Springer-Verlag, Berlin, 1996.

[S1] P. Schnorr. Efficient identification and signatures for smart cards. In Crypto ’89, pages 235–251.
LNCS No. 435. Springer-Verlag, Berlin, 1989.

[S2] A. Shamir. How to share a secret. Comm. ACM, 22:612–613, 1979.
[SG] V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen ciphertext attack. In

Eurocrypt ’98, pages 1–16. LNCS No. 1403. Springer-Verlag, Berlin, 1998.
[W] W. Dai. Benchmarks for the Crypto++ 4.0 library performance. Available at

http://www.eskimo.com/∼weidai/cryptlib.html.

